Chapter 9 - Topics in Analytic Geometry, Part I

Section 1	Circles and Parabolas
Section 2	Ellipses
Section 3	Hyperbolas

	Vocabulary
Conic (section)	Circle
Ellipse	Parabola
Hyperbola	Focus
Vertex	Directrix
Axis (of symmetry)	Center
Radius	Major axis
Minor axis	Center
Foci	Eccentricity
Vertices	Transverse axis
Conjugate axis	Asymptotes

Section 9.1 Circles and Parabolas

Objective: In this lesson you learned how to recognize conics, write equations of circles in standard form, write equations of parabolas in standard form, and use the reflective property of parabolas to solve problems.

	Important Vocabulary		
Conic (Section)	Circle	Ellipse	Parabola
Focus	Vertex	Directrix	Axis (of Symmetry)
Radius			Center

I. Conics

A conic section, or conic, is:

What you should learn:

How to recognize a conic as the intersection of a plane and a double-napped cone

Name the four basic conic sections:

In the formation of the four basic conics, the intersecting plane does not pass through the vertex of the cone. When the plane does pass through the vertex, the resulting figure is $\mathrm{a}(\mathrm{n})$
\qquad , such as \qquad
\qquad
II. Parabolas

A parabola is:

What you should learn:
How to write equations of parabolas in standard form

The midpoint between the focus and the directrix is the \qquad of a parabola. The line passing through the focus and the vertex is the \qquad of the parabola.

The standard form of the equation of a parabola with a vertical axis having a vertex at (h, k) and directrix $y=k-p$ is \qquad .

The standard form of the equation of a parabola with a horizontal axis having a vertex at (h, k) and a directrix $x=h-p$ is \qquad .

The focus lies on the axis p units (directed distance) from the vertex. If the vertex is at the origin $(0,0)$, the equation takes one of the following forms:
\qquad or \qquad .

Vertical Parabola

Horizontal Parabola

III. Reflective Properties of Parabolas A focal chord is:

What you should learn:

How to use the reflexive property of parabolas to solve real-life problems.

The specific focal chord perpendicular to the axis of a parabola is called the
\qquad .

The reflexive property of a parabola states that the tangent line to a parabola at point P makes equal angles with the following two lines:
1)
2)

IV. Circles

A circle is the set of all points (x, y) in a plane that are
\qquad from a fixed point (h, k), called the
\qquad of the circle. The distance r between the

What you should learn:
How to write equations of circles in standard form _.
center and any point (x, y) on the circle is the \qquad

The standard form of the equation of a circle with center (h, k) and radius r is
\qquad .

The standard form of the equation of a circle with radius r and whose center is the origin is
\qquad .

Section 9.1 Examples - Circles and Parabolas

(1) Find the standard form of the equation of the parabola with vertex at the origin and focus at $(1,0)$.
(2) Find the vertex, focus, and directrix of the parabola and sketch its graph. $y=-\frac{1}{2} x^{2}-x+\frac{1}{2}$

(3) The point $(0,1)$ is on a circle whose center is at $(-2,1)$. Write the standard form of the equation of the circle.
(4) Sketch the circle. Identify its center, radius, and x - and y-intercepts. $(x+5)^{2}+(y-4)^{2}=25$

Section 9.2 Ellipses

Objective: In this lesson you learned how to write the standard form of the equation of an ellipse, and analyze and sketch the graphs of ellipses.

Important Vocabulary

Ellipse

Major Axis
Minor Axis
Center

Foci Eccentricity

I. Introduction

An ellipse is:

What you should learn:
How to write equations of ellipses in standard form

The standard form of the equation of an ellipse with center (h, k) and a horizontal major axis of length $2 a$ and a minor axis of length $2 b$, where $0<b<a$, is
\qquad .

The standard form of an equation of an ellipse with center (h, k) and a vertical major axis of length $2 a$ and a minor axis of length $2 b$, where $0<b<a$, is \qquad . In both cases, the foci lie on the major axis, c units from the center, with $c^{2}=$ \qquad .

If the center is at the origin $(0,0)$, the equation takes one of the following forms:
\qquad or \qquad .

Vertical Ellipse

Horizontal Ellipse

II. Eccentricity
\qquad measures the ovalness
of an ellipse. It is given by the ratio $e=$ \qquad For every
ellipse, the value of e lies between \qquad and
\qquad For an elongated ellipse, the value of e is close to \qquad . For an elongated ellipse, the value of e is close

What you should learn:
How to find eccentricities of

Section 9.2 Examples - Ellipses

(1) Sketch the ellipse given by $4 x^{2}+25 y^{2}=100$.

(2) Find the standard form of the equation of an ellipse having foci at $(0,1)$ and $(4,1)$ and a major axis of length 6.
(3) Find the standard form of the equation of an ellipse given by the equation $9 x^{2}+4 y^{2}-54 x+40 y+37=0$.

Section 9.3 Hyperbolas

Objective: In this lesson you learned how to write the standard form of the equation of a hyperbola, and analyze and sketch the graphs of hyperbolas.

	Important Vocabulary	
Hyperbola	Vertices	Center
Conjugate Axis	Asymptotes	

I. Introduction

A hyperbola is:

What you should learn:
How to write equations of hyperbolas in standard form

The line through a hyperbola's two foci intersects the hyperbola at two points called
\qquad .

The midpoint of a hyperbola's transverse axis is the \qquad of the hyperbola.

The standard form of the equation of a hyperbola centered at (h, k) and having a horizontal
transverse axis is \qquad .

The standard form of the equation of a hyperbola centered at (h, k) and having a vertical transverse axis is \qquad .

In each case, the vertices and foci are, respectively, a and c units from the center. Moreover, a, b, and c are related by the equation \qquad .

If the center of the hyperbola is at the origin $(0,0)$, the equation takes one of the following forms:
\qquad or \qquad

Vertical Hyperbola

Horizontal Hyperbola

II. Asymptotes of a Hyperbola

The asymptotes of a hyperbola with a horizontal transverse axis are \qquad .

What you should learn:
How to find asymptotes of and graph hyperbolas

The asymptotes of a hyperbola with a vertical transverse axis are \qquad . The eccentricity of a hyperbola is $e=$ \qquad where the values of e are
\qquad .

III. General Equations of Conics

The graph of $A x^{2}+B x y+C y^{2}+D x+E y+F=0$ is one of the following:

1) Circle if \qquad

What you should learn:
How to classify conics from their general equations
2) Parabola if \qquad
3) Ellipse if \qquad
4) Hyperbola if \qquad

Section 9.3 Examples - Hyperbolas

(1) Classify the equation $9 x^{2}+y^{2}-18 x-4 y+4=0$ as a circle, a parabola, an ellipse, or a hyperbola.
(2) Sketch the graph of the hyperbola given by $4 x^{2}-3 y^{2}+8 x+16=0$.

(3) Find the standard form of the equation of the hyperbola. Identify the center, vertices, foci and asymptotes of the hyperbola.

$$
x^{2}-9 y^{2}+36 y-72=0
$$

