Chapter 4 - Trigonometric Functions

Section 1	Radian and Degree Measure
Section 2	Trigonometric Functions: The Unit Circle
Section 3	Right Triangle Trigonometry
Section 4	Trigonometric Functions of Any Angle
Section 5	Graphs of Sine and Cosine
Section 6	Graphs of Other Trigonometric Functions
Section 7	Inverse Trigonometric Functions
Section 8	Applications and Models

Vocabulary

Angle	Initial Side
Terminal side	Standard Position
Positive angle	Negative angle
Coterminal	Radian
Central angle of a circle	Complementary angle
Supplementary angle	Degree
Unit circle	Sine
Cosine	Tangent
Secant	Cosecant
Cotangent	Opposiod
Hypotenuse	Angle of elevation
Adjacent side	Reference angle
Angle of depression	Inverse sine
Amplitude	Inverse tangent
Inverse cosine	
Bearing	

Section 4.1 Radian and Degree Measure

Objective: In this lesson you learned how to describe an angle and to convert between degree and radian measure

	Important Vocabulary		
Degree	Angle	Initial Side	Terminal Side
Standard Position	Positive Angle	Negative Angle	Coterminal
Radian	Central angle of a circle	Complementary Angles	Supplementary Angles

I. Angles

An angle is determined by:

The initial side of an angle is:

The terminal side of an angle is:

The vertex of an angle is:

An angle is in standard position when:

A positive angle is generated by $a(n)$ \qquad rotation; whereas a negative
angle is generated by a(n) \qquad rotation.

If two angles are coterminal, then they have:
II. Radian Measure

The measure of an angle is determined by:
What you should learn:
How to use radian measure

One radian is the measure of a central angle θ that:

Algebraically this means that $\theta=$

A central angle of one full revolution (counterclockwise) corresponds to an arc length of $s=$ \qquad .

The radian measure of an angle one full revolution is \qquad radians. A half revolution corresponds to an angle of \qquad radians. Similarly $\frac{1}{4}$ revolution corresponds to an angle of
\qquad radians, and $\frac{1}{6}$ revolution corresponds to an angle of \qquad radians. Angles with measures between 0 and $\frac{\pi}{2}$ radians are \qquad angles. Angles with measures between $\frac{\pi}{2}$ and π radians are \qquad angles.

III. Degree Measure

A full revolution (counterclockwise) around a circle corresponds to \qquad degrees. A half revolution around a circle corresponds to \qquad degrees.

What you should learn:
How to use degree measure and convert between degrees and radian measure

To convert degrees to radians, you:

To convert radians to degrees, you:
IV. Linear and Angular Speed

For a circle of radius r, a central angle θ intercepts an arc f length s given by \qquad where θ is measured in radians.

Note that if $r=1$, then $s=\theta$, and the radian measure of θ

What you should learn:
How to use angles to model and solve real-life problems equals \qquad .

Consider a particle moving at a constant speed along a circular arc of radius r. If s is the length of the arc traveled in time t, then the linear speed of the particle is

$$
\text { linear speed }=
$$

\qquad
If θ is the angle (in radian measure) corresponding to the arc length s, then the angular speed of the particle is

$$
\text { angular speed }=
$$

\qquad

Section 4.1 Examples - Radian and Degree Measure

(1) Determine the quadrant in which the angle lies.
a) 55°
b) 215°
c) $\frac{\pi}{6}$
d) $\frac{5 \pi}{4}$
(2) Sketch the angle in standard position.
a) 45°
b) 405°
C) $\frac{3 \pi}{4}$
d) $\frac{4 \pi}{3}$
(3) Determine two coterminal angles (one positive and one negative) for the given angle.

$$
\theta=35^{\circ}
$$

(4) Convert the angle from degrees to radians.
a) 75°
b) -45°
(5) Convert the angle from radians to degrees.
a) $\frac{2 \pi}{3}$
b) $\frac{3 \pi}{2}$
(6) Find the length of the arc on a circle of radius r intercepted by a central angle θ.

$$
r=14 \text { inches, } \theta=180^{\circ}
$$

Section 4.2 Trigonometric Functions: The Unit Circle

Objective: In this lesson you learned how to identify a unit circle and describe its relationship to real numbers.

		Important Vocabulary	
Unit Circle	Periodic	Period	Sine

I. The Unit Circle

As the real number line is wrapped around the unit circle, each real number t corresponds to:

What you should learn:
How to identify a unit circle and describe its relationship to real numbers

The real number 2π corresponds to the point (\qquad \qquad) on the unit circle.

Each real number t also corresponds to a \qquad (in standard position) whose radian measure is t. With this interpretation of t, the arc length formula $s=r \theta$ (with $r=1$) indicates that:

II. The Trigonometric Functions

The coordinates x and y are two functions of the real variable
t. These coordinates can be used to define six trigonometric
functions of t. List the abbreviation for each trigonometric

What you should learn:
How to evaluate trigonometric functions using the unit circle
function.

Sine	\square	Cosecant	
Cosine	\square	Secant	\square
Tangent	\square	Cotangent	

Let t be a real number and let (x, y) be the point on the unit circle corresponding to r. Complete the following definitions of the trigonometric functions:
$\sin t=$ \qquad $\cos t=$ \qquad
$\tan t=$ \qquad $\cot t=$ \qquad
$\sec t=$ \qquad $\csc t=$ \qquad

The cosecant function is the reciprocal of the \qquad function. The cotangent function is the reciprocal of the \qquad function. The secant function is the reciprocal of the
\qquad function.

Complete the following table showing the correspondence between the real number t and the point (x, y) on the unit circle when the unit circle is divided into eight equal arcs.

\boldsymbol{t}	0	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π	$5 \pi / 4$	$3 \pi / 2$	$7 \pi / 4$
\boldsymbol{x}								
\boldsymbol{y}								

Complete the following table showing the correspondence between the real number t and the point
(x, y) on the unit circle when the unit circle is divided into 12 equal arcs.

\boldsymbol{t}	0	$\pi / 6$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$5 \pi / 6$	π	$7 \pi / 6$	$4 \pi / 3$	$3 \pi / 2$	$5 \pi / 3$	$11 \pi / 6$
\boldsymbol{x}												
\boldsymbol{y}												

III. Domain and Period of Sine and Cosine

The sine function's domain is \qquad and its range is [\qquad
\qquad].

The cosine function's domain is

What you should learn:

How to use domain and period to evaluate sine and cosine functions
\qquad and its range is
\qquad ___

The period of the sine function is \qquad . The period of the cosine function is \qquad .

Which trigonometric functions are even functions? \qquad

Which trigonometric functions are odd functions? \qquad

Section 4.2 Examples - Trigonometric Functions: The Unit Circle

(1) Complete the Unit Circles below.
a) Degrees

b) Radians

c) (x, y) values

(2) Find the point (x, y) on the unit circle that corresponds to the real number t.

$$
t=\frac{5 \pi}{4}
$$

(3) Evaluate (if possible) the six trigonometric functions of the real number.

$$
t=\frac{3 \pi}{4}
$$

(4) Determine the exact values of the six trigonometric functions of the angle θ.

Section 4.3 Right Triangle Trigonometry

Objective: In this lesson you learned how to evaluate trigonometric functions of acute angles and how to use the fundamental trigonometric identities.

	Important Vocabulary
Hypotenuse	Opposite Side
Angle of Elevation	Angle of Depression

I. The Six Trigonometric Functions

In the right triangle below, label the three sides of the triangle relative to the angle labeled θ as (a) the hypotenuse, (b) the opposite side, and (c) the adjacent side.

What you should learn:
How to evaluate trigonometric functions of acute angles

Let θ be an acute angle of a right triangle. Define the six trigonometric functions of the angle θ using $o p p=$ the length of the side opposite $\theta, a d j=$ the length of the side adjacent to θ, and hyp $=$ the length of the hypotenuse.
$\sin \theta=$ \qquad $\cos \theta=$ \qquad
$\tan \theta=$ \qquad $\csc \theta=$ \qquad
$\sec \theta=$ \qquad $\cot \theta=$ \qquad

The cosecant function is the reciprocal of the \qquad function. The cotangent function is the reciprocal of the \qquad function. The secant function is the reciprocal of the
\qquad function.

Give the sines, cosines, and tangents of the following special angles:
$\sin 30^{\circ}=\sin \frac{\pi}{6}=$ \qquad

$$
\cos 30^{\circ}=\cos \frac{\pi}{6}=
$$

\qquad
$\tan 30^{\circ}=\tan \frac{\pi}{6}=$ \qquad
$\sin 45^{\circ}=\sin \frac{\pi}{4}=$ \qquad
$\cos 45^{\circ}=\cos \frac{\pi}{4}=$ \qquad $\tan 45^{\circ}=\tan \frac{\pi}{4}=$ \qquad
$\sin 60^{\circ}=\sin \frac{\pi}{3}=$ \qquad $\cos 60^{\circ}=\cos \frac{\pi}{3}=$ \qquad
$\tan 60^{\circ}=\tan \frac{\pi}{3}=$ \qquad

Cofunctions of complementary angles are \qquad . If θ is an acute angle, then:

$$
\sin \left(90^{\circ}-\theta\right)=
$$

$$
\tan \left(90^{\circ}-\theta\right)=
$$

\qquad
$\sec \left(90^{\circ}-\theta\right)=$ \qquad
$\cos \left(90^{\circ}-\theta\right)=$ \qquad
$\cot \left(90^{\circ}-\theta\right)=$ \qquad
$\csc \left(90^{\circ}-\theta\right)=$ \qquad

II. Trigonometric Identities

List six reciprocal identities:
1)
2)
3)
4)
5)
6)

List two quotient identities:
1)
2)

What you should learn:

How to use the fundamental trigonometric identities

List three Pythagorean identities:
1)
2)
3)
III. Applications Involving Right Triangles

What does it mean to "solve a right triangle?"

What you should learn:
How to use trigonometric functions to model and solve real-life problems

An angle of elevation is:

An angle of depression is:

Section 4.3 Examples - Right Triangle Trigonometry

(1) Sketch a right triangle corresponding to the trigonometric function of the acute angle θ.

$$
\sin \theta=\frac{5}{6}
$$

(2) Use the given function value(s) and the trigonometric identities to find the indicated trigonometric functions.

$$
\sin 60^{\circ}=\frac{\sqrt{3}}{2}, \quad \cos 60^{\circ}=\frac{1}{2}
$$

a. $\tan 60^{\circ}$
b. $\sin 30^{\circ}$
c. $\cos 30^{\circ}$
d. $\cot 60^{\circ}$
(3) Use identities to transform one side of the equation into the other $\left(0<\theta<\frac{\pi}{2}\right)$. $\tan \theta \cot \theta=1$

Section 4.4 Trigonometric Functions of Any Angle

Objective: In this lesson you learned how to evaluate trigonometric functions of any angle.

Important Vocabulary

Reference Angle

I. Introduction

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r=\sqrt{x^{2}+y^{2}} \neq 0$. Complete the following definitions of the trigonometric functions of any

What you should learn:

How to evaluate trigonometric functions of any angle

Name the quadrant(s) in which the sine function is positive: \qquad

Name the quadrant(s)in which the sine function is negative: \qquad

Name the quadrant(s)in which the cosine function is positive: \qquad

Name the quadrant(s)in which the cosine function is negative: \qquad

Name the quadrant(s)in which the tangent function is positive: \qquad

Name the quadrant(s)in which the tangent function is negative: \qquad

II. Reference Angles

The definition of a Reference Angle states that:

What you should learn:

How to use reference angles to evaluate trigonometric functions

How to you find a reference angle in each of the following quadrants:

II:
III:
IV:
III. Trigonometric Functions of Real Numbers

To find the value of a trigonometric function of any angle θ, you:
1)
2)
3)

What you should learn:
How to evaluate trigonometric functions of real numbers

Section 4.4 Examples - Trigonometric Functions of Any Angle

(1) Determine the exact values of the six trigonometric functions of the angle θ.
a)

b) $\sin \theta=\frac{3}{5}, \quad \theta$ lies in Quadrant II
(2) Find the reference angle θ^{\prime} for the special angle θ.

$$
\theta=120^{\circ}
$$

(3) Find the exact value for each function for the given angle for $f(\theta)=\sin \theta$ and $g(\theta)=\cos \theta$.

$$
\theta=30^{\circ}
$$

a) $(f+g)(\theta)$
b) $(g-f)(\theta)$
c) $[g(\theta)]^{2}$
d) $(f g)(\theta)$
e) $f(2 \theta)$
f) $g(-\theta)$

Section 4.5 Graphs of Sine and Cosine Functions

Objective: In this lesson you learned how to sketch the graph of sine and cosine functions and translations of these functions.

Important Vocabulary

Sine Curve
One Cycle
Amplitude
Phase Shift
I. Basic Sine and Cosine Curves

For $0 \leq x \leq 2 \pi$, the sine function has its maximum point at
\qquad , its minimum point at
\qquad , and its intercepts at
\qquad .

For $0 \leq x<2 \pi$, the cosine function has its maximum point(s) at \qquad its minimum point at \qquad and its intercepts at
\qquad .

Sketch the sine curve on the interval $[0,2 \pi]$

Sketch the cosine curve on the interval $[0,2 \pi]$

II. Amplitude and Period of Sine and Cosine Curves

The constant factor a in $y=a \sin x$ acts as:

What you should learn:
How to use amplitude and period to help sketch the graphs of sine and cosine functions

If $|a|>1$, the basic sine curve is \qquad . If $|a|<1$, the basic sine curve is
\qquad . The result is that the graph of $y=a \sin x$ ranges between
\qquad instead of between -1 and 1 . The absolute value of a is the
\qquad of the function $y=\operatorname{asin} x$.

The graph of $y=-0.5 \sin x$ is a(n) \qquad in the x-axis of the graph of
$y=0.5 \sin x$.

Let b be a positive real number. The period of $y=a \sin b x$ and $y=a \cos b x$ is \qquad . If
$0<b<1$, the period of $y=a \sin b x$ is \qquad than 2π represents a
\qquad of the graph of $y=a \sin b x$. If $b>1$, the period of $y=a \sin b x$
is \qquad than 2π represents a \qquad of the graph of $y=\operatorname{asin} b x$.

III. Translations of Sine and Cosine Curves

The constant c in the general equations $y=a \sin (b x-c)$ and $y=a \cos (b x-c)$ creates:

What you should learn:
How to sketch translations of graphs of sine and cosine functions

Comparing $y=a \sin b x$ with $y=a \sin (b x-c)$, the graph of $y=a \sin (b x-c)$ completes one cycle from \qquad to \qquad . By solving for x, you can find the interval
for one cycle is found to be \qquad to \qquad . This implies that the period of $y=a \sin (b x-c)$ is \qquad and the graph of $y=a \sin (b x-c)$ is the graph of $y=a \sin b x$ sifted by the amount \qquad .

The constant d in the equation $y=d+a \sin (b x-c)$ causes a(n)
\qquad . For $d>0$, the shift is \qquad .

For $d<0$, the shift is \qquad . The graph oscillates about
\qquad -.

Section 4.5 Examples - Graphs of Sine and Cosine Functions

(1) Describe the translations occurring from the graph of f to the graph of g.
a) $f(x)=\sin x$ $g(x)=\sin (x-\pi)$
b) $f(x)=\cos x$ $g(x)=-\cos x$
(2) Sketch 2 full periods of the graphs of f and g on the same axes.

$$
\begin{aligned}
& f(x)=\sin x \\
& g(x)=-\sin \left(x+\frac{\pi}{2}\right)
\end{aligned}
$$

Section 4.6 Graphs of Other Trigonometric Functions

Objective: In this lesson you learned how to sketch the graphs of other trigonometric functions.

I. Graph of the Tangent Function

Because the tangent function is odd, the graph of
$y=\tan x$ is symmetric with respect to the \qquad _.

What you should learn: How to sketch the graphs of tangent functions The period of the tangent function is \qquad . The tangent function has vertical asymptotes at $x=$ \qquad , where n is an integer. The domain of the tangent function is \qquad and the range of the function is (\qquad ,
\qquad).

Describe how to sketch the graph of a function of the form $y=a \tan (b x-c)$.
1)
2)
3)
4)
II. Graph of the Cotangent Function

The period of the cotangent function is \qquad . The domain of the cotangent function is \qquad , and the range of the cotangent function is (\qquad _(_)).

What you should learn:
How to sketch the graphs of cotangent functions

The vertical asymptotes of the cotangent function occur at $x=$ \qquad where n is an integer.
III. Graphs of the Reciprocal Functions

At a given value of x, the y-coordinate of $\csc x$ is the reciprocal of the y-cooridnate of \qquad .

The graph of $y=\csc x$ is symmetric with respect to the
What you should learn:
How to sketch the graphs of secant and cosecant functions
\qquad
\qquad .The period of the cosecant function is \qquad . The cosecant function has vertical asymptotes at $x=$ \qquad where n is an integer. The domain of the cosecant function is
\qquad , and the range of the cosecant functions is

At a given value of x, the y-coordinate of $\sec x$ is the reciprocal of the y-coordinate of
\qquad . The graph of $y=\sec x$ is symmetric with respect to the \qquad The
period of the secant function is \qquad . The secant function has vertical asymptotes at
$x=$ \qquad . The domain of the secant function is \qquad and
the range of the secant function is \qquad .

To sketch a graph of a secant or cosecant function, you:
1)
2)
3)
4)

In comparing the graphs of cosecant and secant functions with those of the sine and cosine functions, note that the "hills" and "valleys" are \qquad .

Section 4.6 Examples - Graphs of Other Trigonometric Functions

(1) Describe the translations occurring from the graph of f to the graph of g.

$$
\begin{aligned}
& f(x)=\tan x \\
& g(x)=\tan \left(x+\frac{\pi}{4}\right)
\end{aligned}
$$

(2) Sketch 2 full periods of the graphs of f
a. $f(x)=\frac{1}{2} \tan x$

b. $f(x)=\csc \frac{x}{2}$

c. $f(x)=-\frac{1}{2} \sec x$

Section 4.7 Inverse Trigonometric Functions

Objective: In this lesson you learned how to evaluate the inverse trigonometric functions and how to evaluate the composition of trigonometric functions.

```
                    Important Vocabulary
Inverse Sine Function Inverse Cosine Function Inverse Tangent Function
```

I. Inverse Sine Function

The inverse sine function is defined by:

What you should learn:
How to evaluate inverse sine functions

The domain of $y=\arcsin x$ is [\qquad , \qquad]. The range of $y=\arcsin x$ is [\qquad
\qquad
II. Other Inverse Trigonometric Functions

The inverse cosine function is defined by:

What you should learn:
How to evaluate other inverse trigonometric functions

The domain of $y=\arccos x$ is [\qquad
\qquad]. The range of $y=\arccos x$ is [\qquad
\qquad].

The inverse tangent function is defined by:

The domain of $y=\arctan x$ is (\qquad
\qquad). The range of $y=\arctan x$ is (\qquad -_).

III. Compositions of Functions

State the Inverse Property for the Sine function.

What you should learn:
How to evaluate compositions of trigonometric functions

State the Inverse Property for the Cosine function.

State the Inverse Property for the Tangent function.

Section 4.7 Examples - Inverse Trigonometric Functions

(1) Use a calculator to approximate the value of the expression in radians and degrees.
a) $\arcsin 0.45$
b) $\cos ^{-1} 0.28$
(2) Use an inverse trigonometric function to write θ as a function of x.

8

Section 4.8 Applications and Models

Objective: In this lesson you learned how to use trigonometric functions to model and solve reallife problems.

Important Vocabulary

Bearing
I. Trigonometry and Bearings

Used to give directions in surveying and navigation, a bearing measures:

What you should learn:
How to solve real-life problems involving directional bearings

The bearing $N 70^{\circ} E$ means:

II. Harmonic Motion

The vibration, oscillation, or rotation of an object under ideal conditions such that the object's uniform and regular motion can be described by a sine or cosine function is called

What you should learn:
How to solve real-life problems involving harmonic motion

A point that moves on a coordinate line is said to be in simple harmonic motion if:

The simple harmonic motion has amplitude \qquad , period \qquad and frequency \qquad .

Section 4.8 Examples - Applications and Models

(1) Solve the right triangle shown in the figure.
$A=30^{\circ}, b=10$

(2) A ship leaves port at noon and has a bearing of $S 29^{\circ} \mathrm{W}$. The ship sails at 20 knots. How many nautical miles south and how many nautical miles west does the ship travel by 6:00 P.M.?

