Chapter 4 – Trigonometric Functions

Section 1	Radian and Degree Measure
Section 2	Trigonometric Functions: The Unit Circle
Section 3	Right Triangle Trigonometry
Section 4	Trigonometric Functions of Any Angle
Section 5	Graphs of Sine and Cosine
Section 6	Graphs of Other Trigonometric Functions
Section 7	Inverse Trigonometric Functions
Section 8	Applications and Models

Vocabulary					
Angle	Initial Side				
Terminal side	Standard Position				
Positive angle	Negative angle				
Coterminal	Radian				
Central angle of a circle	Complementary angle				
Supplementary angle	Degree				
Unit circle	Sine				
Cosine	Tangent				
Secant	Cosecant				
Cotangent	Period				
Hypotenuse	Opposite side				
Adjacent side	Angle of elevation				
Angle of depression	Reference angle				
Amplitude	Inverse sine				
Inverse cosine	Inverse tangent				
Bearing					

Section 4.1 Radian and Degree Measure

Objective: In this lesson you learned how to describe an angle and to convert between degree and radian measure

Important Vocabulary								
Degree		Angle		Initial Side	Terminal Side			
Standard Posi	tion	Positive Angle		Negative Angle	Coterminal			
Radian Central angle of a cir		of a circle	Compl	ementary Angles	Supplementary Angles			

I. Angles

An **angle** is determined by:

What you should learn:

How to describe angles

The **initial side** of an angle is:

The **terminal side** of an angle is:

The **vertex** of an angle is:

An angle is in **standard position** when:

A positive angle is generated by a(n)	rotation; whereas a negative
	V

angle is generated by a(n) _____ rotation.

If two angles are **coterminal**, then they have:

II. Radian Measure

The measure of an angle is determined by:

What you should learn:

How to use radian measure

One **radian** is the measure of a central angle θ that:

Algebraically this means that $\theta =$

A central angle of one full revolution (counterclockwise) corresponds to an arc length of

s =_____.

The radian measure of an angle one full revolution is ______ radians. A half revolution

corresponds to an angle of ______ radians. Similarly $\frac{1}{4}$ revolution corresponds to an angle of

_____ radians, and $\frac{1}{6}$ revolution corresponds to an angle of ______ radians.

Angles with measures between 0 and $\frac{\pi}{2}$ radians are _____ angles. Angles with

measures between $\frac{\pi}{2}$ and π radians are _____ angles.

III. Degree Measure

A full revolution (counterclockwise) around a circle corresponds

to ______ degrees. A half revolution around a circle

corresponds to _____ degrees.

To convert degrees to radians, you:

What you should learn:

How to use degree measure and convert between degrees and radian measure

To convert radians to degrees, you:

IV. Linear and Angular Speed

For a circle of radius r, a central angle θ intercepts an arc f

length s given by ______ where heta is measured in radians.

Note that if r = 1, then $s = \theta$, and the radian measure of θ

equals ______.

Consider a particle moving at a constant speed along a circular arc of radius r. If s is the length of the

arc traveled in time t, then the **linear speed** of the particle is

linear speed =_____

If θ is the angle (in radian measure) corresponding to the arc length *s*, then the **angular speed** of the

particle is

angular speed =_____

What you should learn:

How to use angles to model and solve real-life problems

Section 4.1 Examples – Radian and Degree Measure

(1) Determine the quadran a) 55°	t in which the angle lies. b) 215°	c) $\frac{\pi}{6}$	d) $\frac{5\pi}{4}$
(2) Sketch the angle in stan a) 45°	dard position. b) 405°	c) $\frac{3\pi}{4}$	d) $\frac{4\pi}{3}$
(3) Determine two cotermi		nd one negative) for the = 35°	e given angle.
(4) Convert the angle from a) 75°	degrees to radians.	b) —45°	

(5) Convert the angle from radians to degrees.

、	2π			
a)	3			

b) $\frac{3\pi}{2}$

(6) Find the length of the arc on a circle of radius r intercepted by a central angle $\theta.$ $r=14 \text{ inches}, \theta=180^\circ$

Section 4.2 Trigonometric Functions: The Unit Circle

Objective: In this lesson you learned how to identify a unit circle and describe its relationship to real numbers.

Important Vocabulary								
Unit Circle	Periodic	Period	Sine	Cosine				
Tangent	Cosecant	Secant	Cotangent					

Ι.	The Unit Circle	What you should learn:
	As the real number line is wrapped around the unit circle , each real number t corresponds to:	How to identify a unit circle and describe its relationship to real numbers

The real number 2π corresponds to the point (_____, ____) on the unit circle.

Each real number *t* also corresponds to a ______ (in standard position)

whose radian measure is t. With this interpretation of t, the arc length formula $s = r\theta$ (with r = 1) indicates that:

11.	The Trigonometric Functions The coordinates x and y are two functions	of the real variable	What you should learn:
	t. These coordinates can be used to define	six trigonometric	How to evaluate trigonometric functions using the unit circle
	functions of t. List the abbreviation for eac	h trigonometric	
	function.		
	Sine	Cosecant	
	Cosine	Secant	
	Tangent	Cotangent	

Let t be a real number and let (x, y) be the point on the unit circle corresponding to r. Complete the following definitions of the trigonometric functions:

$\sin t = _$	$\cos t = $
$\tan t = _$	cot <i>t</i> =
$\sec t = $	$\csc t = $
The cosecant function is the reciproca	I of the function. The cotangent function is
the reciprocal of the	function. The secant function is the reciprocal of the
function.	

Complete the following table showing the correspondence between the real number *t* and the point

(x, y) on the unit circle when the unit circle is divided into eight equal arcs.

t	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	7π/4
x								
y								

Complete the following table showing the correspondence between the real number t and the point

(x, y) on the unit circle when the unit circle is divided into 12 equal arcs.

t	0	π/6	π/3	$\pi/2$	$2\pi/3$	5π/6	π	7π/6	4π/3	3π/2	5π/3	11π/6
x												
y												

III. Domain and Period of Sine and Cosine

The sine function's domain is _____

and its range is [_____, ____].

The cosine function's domain is

_____ and its range is

[_____].

The **period** of the sine function is ______. The period of the cosine function is ______.

Which trigonometric functions are even functions?

Which trigonometric functions are odd functions?

What you should learn:

How to use domain and period to evaluate sine and cosine functions

Section 4.2 Examples – Trigonometric Functions: The Unit Circle

- (1) Complete the Unit Circles below.
 - a) Degrees

b) Radians

c) (x, y) values

(2) Find the point (x, y) on the unit circle that corresponds to the real number t.

$$t = \frac{5\pi}{4}$$

(3) Evaluate (if possible) the six trigonometric functions of the real number.

$$t = \frac{3\pi}{4}$$

(4) Determine the exact values of the six trigonometric functions of the angle θ .

Section 4.3 Right Triangle Trigonometry

Objective: In this lesson you learned how to evaluate trigonometric functions of acute angles and how to use the fundamental trigonometric identities.

Important Vocabulary				
Hypote	enuse	Opposite Side	Adjacent Side	
Angle of Elevation		Angle of Depression		
I.	. The Six Trigonometric Functions In the right triangle below, label the three sid		What you should learn:	
			How to evaluate trigonometr	

relative to the angle labeled θ as (a) the **hypotenuse**, (b) the

functions of acute angles

opposite side, and (c) the adjacent side.

Let θ be an acute angle of a right triangle. Define the six trigonometric functions of the angle θ using opp = the length of the side opposite θ , adj = the length of the side adjacent to θ , and hyp = the length of the hypotenuse. $\sin \theta =$ $\cos \theta =$ $\csc \theta =$ _____ $\tan \theta =$ $\sec \theta =$ _____ $\cot \theta =$ _____

The cosecant function is the reciprocal of the ______ function. The cotangent function is

the reciprocal of the ______ function. The secant function is the reciprocal of the

_____ function.

Give the sines, cosines, and tangents of the following special angles:

II.

$\sin 30^\circ = \sin \frac{\pi}{6} = \underline{\qquad}$	$\cos 30^\circ = \cos \frac{\pi}{6} = _$	
$\tan 30^\circ = \tan \frac{\pi}{6} = \underline{\qquad}$	$\sin 45^\circ = \sin \frac{\pi}{4} = _$	
$\cos 45^\circ = \cos \frac{\pi}{4} = \underline{\qquad}$	$\tan 45^\circ = \tan \frac{\pi}{4} = _$	
$\sin 60^\circ = \sin \frac{\pi}{3} = \underline{\qquad}$	$\cos 60^\circ = \cos \frac{\pi}{3} = _$	
$\tan 60^\circ = \tan \frac{\pi}{3} = \underline{\qquad}$		
Cofunctions of complementary angles are	If θ is	an acute angle, then:
$\sin(90^\circ - \theta) = \underline{\qquad}$	$\cos(90^\circ - \theta) = _$	
$\tan(90^\circ - \theta) = _$	$\cot(90^\circ - \theta) = $	
$\sec(90^\circ - \theta) = $	$\csc(90^\circ - \theta) = $	
Trigonometric Identities List six reciprocal identities:		What you should learn:
1)		How to use the fundamental trigonometric identities
2)		
3)		
4)		
5)		
6)		
List two quotient identities:	List three Pyt	hagorean identities:
1)	1)	
2)	2)	
	3)	

III. Applications Involving Right Triangles What does it mean to "solve a right triangle?"

What you should learn:

How to use trigonometric functions to model and solve real-life problems

An angle of elevation is:

An angle of depression is:

Section 4.3 Examples – Right Triangle Trigonometry

(1) Sketch a right triangle corresponding to the trigonometric function of the acute angle θ .

$$\sin\theta = \frac{5}{6}$$

(2) Use the given function value(s) and the trigonometric identities to find the indicated trigonometric functions.

$$\sin 60^\circ = \frac{\sqrt{3}}{2}, \qquad \cos 60^\circ = \frac{1}{2}$$

a. $\tan 60^{\circ}$

b. $\sin 30^{\circ}$

- c. $\cos 30^{\circ}$
- d. $\cot 60^{\circ}$
- (3) Use identities to transform one side of the equation into the other $\left(0 < \theta < \frac{\pi}{2}\right)$. $\tan \theta \cot \theta = 1$

Section 4.4 Trigonometric Functions of Any Angle

	Impor	rtant Vocabulary		
Reference Angle				
I.	Introduction Let θ be an angle in standard position terminal side of θ and $r = \sqrt{x^2 + y^2}$	What you should learn: How to evaluate trigonometri functions of any angle		
	following definitions of the trigonom angle.	etric functions of any		
	$\sin \theta = $	$\cos \theta =$		
	$\tan \theta = _$ $\sec \theta = _$	$\csc \theta = \$ $\cot \theta = \$		
	Name the quadrant(s)in which the sin Name the quadrant(s)in which the co Name the quadrant(s)in which the co Name the quadrant(s)in which the ta	osine function is positive: osine function is negative: _		
Ш.	Name the quadrant(s)in which the tangent function is negative: _ Reference Angles The definition of a Reference Angle states that:		What you should learn: How to use reference angles	
			evaluate trigonometric functions	
	How to you find a reference angle in each of the following quadrants:			

III. Trigonometric Functions of Real Numbers

To find the value of a trigonometric function of any angle $\boldsymbol{\theta},$ you:

What you should learn:

How to evaluate trigonometric functions of real numbers

- 1)
- 2)
- 3)

Section 4.4 Examples – Trigonometric Functions of Any Angle

(1) Determine the exact values of the six trigonometric functions of the angle θ .

- (2) Find the reference angle θ' for the special angle θ .
 - $\theta = 120^{\circ}$
- (3) Find the exact value for each function for the given angle for $f(\theta) = \sin \theta$ and $g(\theta) = \cos \theta$. $\theta = 30^{\circ}$
 - a) $(f+g)(\theta)$
 - b) $(g-f)(\theta)$
 - c) $[g(\theta)]^2$
 - d) $(fg)(\theta)$
 - e) $f(2\theta)$
 - f) $g(-\theta)$

Section 4.5 Graphs of Sine and Cosine Functions

Objective: In this lesson you learned how to sketch the graph of sine and cosine functions and translations of these functions.

	Important Vocabulary				
Sine Curv	e One Cycle	Amplitude	Phase Shift		
I.	Basic Sine and Cosine Curv For $0 \le x \le 2\pi$, the sine func		How to sketch the graphs of		
		, and its intercepts at	t		
	For $0 \le x < 2\pi$, the cosine fu	unction has its maximum p	point(s) at, its		
	minimum point at, and its intercepts at				
		·			

Sketch the sine curve on the interval $[0, 2\pi]$

Sketch the cosine curve on the interval $[0, 2\pi]$

-	Period of Sine and Cosine Curves for a in $y = a \sin x$ acts as:	What you should learn:		
	-	How to use amplitude and period to help sketch the graphs of sine and cosine functions		
If $ a > 1$, the bas	sic sine curve is I	f $ a < 1$, the basic sine curve is		
	The result is that the graph of $y = a \sin x$ ranges between			
	instead of between -1 and 1. The absolute value of a is the			
	of the function $y = a \sin x$.			
The graph of $y =$	-0.5 sin x is a(n)	in the <i>x</i> -axis of the graph of		
$y = 0.5 \sin x.$				
Let <i>b</i> be a positive	e real number. The period of $y = a \sin bx$ a	nd $y = a \cos bx$ is If		
0 < b < 1, the pe	eriod of $y = a \sin bx$ is	than 2π represents a		
	of the graph of $y = a \sin b$	bx . If $b > 1$, the period of $y = a \sin bx$		
is tl	han 2π represents a	of the graph of $y = a \sin h x$		
		$_$ of the graph of $y = a \sin bx$.		
Translations of	Sine and Cosine Curves the general equations $y = a \sin(bx - c)$ and	Mhat you should learn:		
Translations of	Sine and Cosine Curves the general equations $y = a \sin(bx - c)$ as	What you should learn:		
Translations of The constant <i>c</i> in $y = a \cos(bx - c)$	Sine and Cosine Curves the general equations $y = a \sin(bx - c)$ as	What you should learn: How to sketch translations of graphs of sine and cosine functions		
Translations of The constant <i>c</i> in $y = a \cos(bx - c)$ Comparing $y = a$	Sine and Cosine Curves the general equations $y = a \sin(bx - c)$ and (c) creates:	What you should learn: How to sketch translations of graphs of sine and cosine functions of $y = a \sin(bx - c)$ completes one		
Translations of xThe constant c in $y = a \cos(bx - c)$ Comparing $y = a$ cycle from	Sine and Cosine Curves the general equations $y = a \sin(bx - c)$ and c) creates: $a \sin bx$ with $y = a \sin(bx - c)$, the graph o	NM What you should learn: How to sketch translations of graphs of sine and cosine functions of $y = a \sin(bx - c)$ completes one sy solving for x, you can find the interval		
Translations of x The constant c in $y = a \cos(bx - c)$ Comparing $y = a$ cycle from for one cycle is for	Sine and Cosine Curves the general equations $y = a \sin(bx - c)$ and (x) creates: $a \sin bx$ with $y = a \sin(bx - c)$, the graph of to B	What you should learn: How to sketch translations of graphs of sine and cosine functions of $y = a \sin(bx - c)$ completes one by solving for x , you can find the interval . This implies that the period of		
Translations of x The constant c in $y = a \cos(bx - c)$ Comparing $y = a$ cycle from for one cycle is for	Sine and Cosine Curves the general equations $y = a \sin(bx - c)$ and the general equations $y = a \sin(bx - c)$, and the graph of $y = a \sin(bx - c)$, the graph of to Be bound to be to Be point to be to Be point to be to Be to Be	What you should learn: How to sketch translations of graphs of sine and cosine functions of $y = a \sin(bx - c)$ completes one by solving for x , you can find the interval . This implies that the period of		
Translations of The constant <i>c</i> in $y = a \cos(bx - c)$ Comparing $y = a$ cycle from for one cycle is fo $y = a \sin(bx - c)$ sifted by the amo	Sine and Cosine Curves the general equations $y = a \sin(bx - c)$ and the general equations $y = a \sin(bx - c)$, and the graph of $y = a \sin(bx - c)$, the graph of to Be bound to be to Be point to be to Be point to be to Be to	andWhat you should learn: How to sketch translations of graphs of sine and cosine functionsof $y = a \sin(bx - c)$ completes one by solving for x , you can find the intervalThis implies that the period of $(x - c)$ is the graph of $y = a \sin bx$		
Translations of The constant <i>c</i> in $y = a \cos(bx - c)$ Comparing $y = a$ cycle from for one cycle is fo $y = a \sin(bx - c)$ sifted by the amo The constant <i>d</i> in	Sine and Cosine Curves the general equations $y = a \sin(bx - c)$ and c) creates: $a \sin bx$ with $y = a \sin(bx - c)$, the graph of to B bund to beto B bund to beto c) is and the graph of $y = a \sin(bx)$ bunt	NM What you should learn: How to sketch translations of graphs of sine and cosine functions of $y = a \sin(bx - c)$ completes one by solving for x , you can find the interval This implies that the period of $(x - c)$ is the graph of $y = a \sin bx$ s a(n)		

Section 4.5 Examples – Graphs of Sine and Cosine Functions

(1) Describe the translations occurring from the graph of f to the graph of g.

a)
$$f(x) = \sin x$$

 $g(x) = \sin(x - \pi)$
b) $f(x) = \cos x$
 $g(x) = -\cos x$

(2) Sketch 2 full periods of the graphs of f and g on the same axes.

 $f(x) = \sin x$ $g(x) = -\sin\left(x + \frac{\pi}{2}\right)$

Section 4.6 Graphs of Other Trigonometric Functions

Objective: In this lesson you learned how to sketch the graphs of other trigonometric functions.

Ι.	Graph of the Tangent Function	What you should learn:	
	Because the tangent function is odd, the graph of	How to sketch the graphs of	
	$y = \tan x$ is symmetric with respect to the	tangent functions	
	The period of the tangent function is The tangent		
	function has vertical asymptotes at $x = $, where n	is an integer. The domain of the	
	tangent function is, and the rar	nge of the function is (,	
).		
	Describe how to sketch the graph of a function of the form $y = a$	$\tan(bx-c).$	
	1)		
	2)		
	3)		
	4)		
н.	Graph of the Cotangent Function	What you should learn:	
	The period of the cotangent function is The domain of	How to sketch the graphs of	
	the cotangent function is, and	cotangent functions	
	the range of the cotangent function is (,).		
	The vertical asymptotes of the cotangent function occur at $x = $, where <i>n</i> is an integer.	
III.	Graphs of the Reciprocal Functions	What you should learn:	
	At a given value of x, the y-coordinate of csc x is the reciprocal	How to sketch the graphs of	
	of the <i>y</i> -cooridnate of	secant and cosecant functions	
	The graph of $y = \csc x$ is symmetric with respect to the		
	The period of the cosecant function is	The cosecant function has	
	vertical asymptotes at $x = $, where n is an integer. The c	lomain of the cosecant function is	
	, and the range of the cosecant	functions is	

At a given value of x, the y-coordinate of sec x is the reciprocal of the y-coordinate of

_____. The graph of $y = \sec x$ is symmetric with respect to the ______. The

period of the secant function is ______. The secant function has vertical asymptotes at

x = _____. The domain of the secant function is ______, and

the range of the secant function is ______.

To sketch a graph of a secant or cosecant function, you:

- 1)
- 2)
- 3)
- 4)

In comparing the graphs of cosecant and secant functions with those of the sine and cosine

functions, note that the "hills" and "valleys" are ______.

Section 4.6 Examples – Graphs of Other Trigonometric Functions

- (1) Describe the translations occurring from the graph of f to the graph of g.
 - $f(x) = \tan x$ $g(x) = \tan\left(x + \frac{\pi}{4}\right)$
- (2) Sketch 2 full periods of the graphs of f

a.
$$f(x) = \frac{1}{2} \tan x$$

Section 4.7 Inverse Trigonometric Functions

Objective: In this lesson you learned how to evaluate the inverse trigonometric functions and how to evaluate the composition of trigonometric functions.

Important Vocabulary				
Inverse S	ine Function Inverse Cosine Func	ion In	verse Tangent Function	
I.	Inverse Sine Function		What you should learn:	
	The inverse sine function is defined by:		How to evaluate inverse sine functions	
	The domain of $y = \arcsin x$ is [,]. The rang	$y = \arcsin x \text{ is } [___].$	
н.	Other Inverse Trigonometric Function The inverse cosine function is defined by:		What you should learn: How to evaluate other inverse trigonometric functions	
	The domain of $y = \arccos x$ is [, The inverse tangent function is defined by		ge of $y = \arccos x$ is $[_ _\]$.	
	The domain of $y = \arctan x$ is (,). The ran	ge of $y = \arctan x$ is (,).	
111.	Compositions of Functions State the Inverse Property for the Sine fun	ction.	What you should learn: How to evaluate compositions of trigonometric functions	
	State the Inverse Property for the Cosine f	unction.		

State the Inverse Property for the Tangent function.

Section 4.7 Examples – Inverse Trigonometric Functions

- (1) Use a calculator to approximate the value of the expression in radians and degrees.
 - a) $\arcsin 0.45$ b) $\cos^{-1} 0.28$

(2) Use an inverse trigonometric function to write θ as a function of x.

Section 4.8 Applications and Models

Objective: In this lesson you learned how to use trigonometric functions to model and solve reallife problems.

Important Vocabulary

Bearing

I. Trigonometry and Bearings

Used to give directions in surveying and navigation, a bearing

measures:

What you should learn:

How to solve real-life problems involving directional bearings

The bearing $N 70^{\circ} E$ means:

II. Harmonic Motion

The vibration, oscillation, or rotation of an object under ideal conditions such that the object's uniform and regular motion can be described by a sine or cosine function is called

What you should learn:

How to solve real-life problems involving harmonic motion

A point that moves on a coordinate line is said to be in **simple harmonic motion** if:

The simple harmonic motion has amplitude _____, period _____, and frequency _____.

Section 4.8 Examples – Applications and Models

(1) Solve the right triangle shown in the figure.

(2) A ship leaves port at noon and has a bearing of S 29° W. The ship sails at 20 knots. How many nautical miles south and how many nautical miles west does the ship travel by 6:00 P.M.?