Chapter 3 - Exponential and Logarithmic Functions

Section 1	Exponential Functions and Their Graphs
Section 2	Logarithmic Functions and Their Graphs
Section 3	Properties of Logarithms
Section 4	Solving Exponential and Logarithmic Equations
Section 5	Exponential and Logarithmic Models

Vocabulary

Exponential function
Common Logarithmic Function

Natural Base e
Natural Logarithmic Function

Change-of-base formula

Section 3.1 Exponential Functions and Their Graphs

Objective: In this lesson you learned how to recognize, evaluate, and graph exponential functions.

	Important Vocabulary Exponential Function Natural Base \boldsymbol{e}
I.Exponential Functions Polynomial functions and rational functions are examples of The exponential function \boldsymbol{f} with base \boldsymbol{a} is denoted byWhat you should learn: How to recognize and evaluate exponential functions with base a	

\qquad where $a \geq 0, a \neq 1$, and x is any real number.
II. Graphs of Exponential Functions

For $a>1$, is the graph of $f(x)=a^{x}$ increasing or decreasing over its domain? \qquad
For $a>1$, is the graph of $g(x)=a^{-x}$ increasing or decreasing

What you should learn:
How to graph exponential functions with base a
over its domain? \qquad
For the graph of $y=a^{x}$ or $y=a^{-x}, a>1$, the domain is \qquad the range is
\qquad and the y-intercept is \qquad . Also, both graphs have
\qquad as a horizontal asymptote.
III. The Natural Base e

The natural exponential function is given by the function
\qquad .

For the graph of $f(x)=e^{x}$, the domain is

What you should learn:
How to recognize, evaluate, and graph exponential functions with base e
\qquad ,the range is \qquad ,and the y -intercept is \qquad .

The number e can be approximated by the expression \qquad for large values of x.

IV. Applications

After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by the formulas:

What you should learn
How to recognize, evaluate, and graph exponential functions with base e

For n compounding's per year: \qquad

For continuous compounding: \qquad

Section 3.1 Examples - Exponential Functions and Their Graphs

(3) Using what you know from Chapter 1 (horizontal/vertical shifts, reflections, etc), describe the transformation from the graph of f to the graph of g.

$$
f(x)=3^{x} \quad g(x)=3^{x-5}
$$

(4) Sketch a graph of the function by finding the asymptote(s) and calculating a few other points. State the domain and range in interval notation.

$$
f(x)=3^{x-1}
$$

(5) Sketch a graph of the function by finding the asymptotes and calculating a few other points. State the domain and range in interval notation.

$$
f(x)=2+e^{x-2}
$$

Section 3.2 Logarithmic Functions and Their Graphs

Objective: In this lesson you learned how to recognize, evaluate, and graph logarithmic functions.

Important Vocabulary	
	Natural Logarithmic Function

I. Logarithmic Functions

The logarithmic function with base a is the
\qquad of the exponential function
$f(x)=a^{x}$.

What you should learn:
How to recognize and evaluate logarithmic functions with base a

The logarithmic function with base \boldsymbol{a} is defined as \qquad for $x>0, a>0$, and $a \neq 1$, if and only if $x=a^{y}$. The notation " $\log _{a} x$ " is read as
\qquad
\qquad ."

The equation $x=a^{y}$ in exponential form is equivalent to the equation \qquad in logarithmic form.

When evaluating logarithms, remember that a logarithm is a(n) \qquad .This means that $\log _{a} x$ is the \qquad to which a must be raised to obtain \qquad .

Complete the following logarithm properties:

1) $\log _{a} 1=$ \qquad
2) $\log _{a} a=$ \qquad
3) $\log _{a} a^{x}=$ \qquad
4) $a^{\log _{a} x}=$ \qquad
5) If $\log _{a} x=\log _{a} y$, then \qquad
II. Graphs of Logarithmic Functions

For $a>1$, is the graph of $f(x)=\log _{a} x$ increasing or
decreasing over its domain?

What you should learn:
How to graph logarithmic functions with base a

For the graph of $f(x)=\log _{a} x, a>1$, the domain is \qquad the range is
\qquad and the x-intercept is \qquad .

Also, the graph has \qquad as a vertical asymptote. The graph of
$f(x)=\log _{a} x$ is a reflection of the graph of $f(x)=a^{x}$ over the line \qquad .
III. The Natural Logarithmic Function

Complete the following natural logarithm properties:

1) $\ln 1=$ \qquad
2) $\ln e=$ \qquad

What you should learn:
How to recognize, evaluate, and graph natural logarithmic functions
3) $\ln e^{x}=$ \qquad
4) $e^{\ln x}=$ \qquad
5) If $\ln x=\ln y$, then \qquad .

Section 3.2 Examples - Logarithmic Functions and Their Graphs

(1) Write the logarithmic equation in exponential form.
(a) $\log _{4} 64=3$
(b) $\log _{5} \sqrt[3]{25}=\frac{2}{3}$
(2) Using what you know from Chapter 1 (horizontal/vertical shifts, reflections, etc), describe the transformation from the graph of f to the graph of g.

$$
f(x)=\log _{2} x \quad g(x)=-2+\log _{2}(x+3)
$$

(3) Sketch a graph of the function by finding the asymptote(s) and calculating a few other points. State the domain and range in interval notation.

$$
f(x)=\ln (x+1)
$$

Section 3.3 Properties of Logarithms

Objective: In this lesson you learned how to rewrite logarithmic functions with different bases and how to use properties of logarithms to evaluate, rewrite, expand, or condense logarithmic expressions.

Important Vocabulary

Change-of-Base Formula

I. Change of Base

Let a, b, and x be positive real numbers such that $a \neq 1$ and $b \neq 1$. The change-of-base formula states that:

Explain how to use a calculator to evaluate $\log _{8} 20$.

II. Properties of Logarithms

Let a be a positive number such that $a \neq 1$; let n be a real number; and let u and v be positive real numbers.

Complete the following logarithm properties:

1) $\log _{a}(u v)=$ \qquad
2) $\log _{a} \frac{u}{v}=$ \qquad
3) $\quad \log _{a} u^{n}=$ \qquad

III. Rewriting Logarithmic Expressions

To expand a logarithmic expression means to:

To condense a logarithmic expression means to:
To condense a logarithmic expression means to.

What you should learn:
How to rewrite logarithms with different bases

What you should learn:

How to use properties of logarithms to evaluate or rewrite logarithmic expressions

What you should learn:

How to use properties of logarithms to expand or condense logarithmic expressions

IV. Applications of Properties of Logarithms

One way of finding a model for a set of nonlinear data is to take the natural log of each of the x-values and y-values of the data set. If the points are graphed and fall on a straight line, then the

What you should learn:

How to use properties of logarithmic functions to model and solve real-life problems x-values and y-values are related by the equation \qquad where m is the slope of the straight line.

Section 3.3 Examples - Properties of Logarithms

(1) Rewrite the logarithm as a ratio of (a) common logarithms and (b) natural logarithms. $\log _{5} x$
(2) Use the properties of logarithms to rewrite and simplify the logarithmic expression.

$$
\log _{2} 4^{2} \cdot 3^{4}
$$

(3) Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms.

$$
\ln \frac{x y}{z}
$$

(4) Condense the expression to the logarithm of a single quantity.
$3 \log x+2 \log y-4 \log z$

Section 3.4 Solving Exponential and Logarithmic Equations

Objective In the lesson you learned how to solve exponential and logarithmic equations.

I. Introduction

State the One-to-One Property for exponential equations.

What you should learn:
How to solve simple exponential and logarithmic equations

State the One-to-One Property for logarithmic equations.

State the Inverse Property for exponential equations and for logarithmic equations.

Describe some strategies for using the One-to-One Properties and the Inverse Properties to solve exponential and logarithmic equations.
-
II. Solving Exponential Equations

Describe how to solve the exponential equation
$10^{x}=90$ algebraically.

What you should learn:
How to solve more
complicated exponential equations
III. Solving Logarithmic Equations

Describe how to solve the logarithmic equation $\log _{6}(4 x-7)=$ $\log _{6}(8-x)$ algebraically.

What you should learn:

How to solve more
complicated logarithmic equations
IV. Applications of Solving Exponential and Logarithmic Equations
Use the formula for continuous compounding $A=P e^{r t}$, to find out how long it will take $\$ 1500$ to triple in value if it is invested at 12% interest, compounded continuously.

What you should learn:
How to use exponential and logarithmic equations to model and solve real-life problems

Section 3.4 Examples - Solving Exponential and Logarithmic Equations

(1) Solve the exponential equation.

$$
5^{x}=\frac{1}{625}
$$

(2) Solve the logarithmic equation.

$$
\ln (2 x-1)=5
$$

(3) Solve the equation. Round your answer to three decimal places.
(a) $7-2 e^{x}=5$
(b) $\log x^{2}=6$

Section 3.5 Exponential and Logarithmic Models

Objective: In this lesson you learned how to use exponential growth models, exponential decay models, logistic models, and logarithmic models to solve real-life problems.
I. Introduction

The exponential growth model is \qquad .

The exponential decay model is \qquad .

The Gaussian model is \qquad .

The logistic growth model is \qquad .

What you should learn:
How to recognize the five most common types of models involving exponential or logarithmic functions

Logarithmic models are \qquad .and \qquad .

II. Exponential Growth and Decay

To estimate the age of dead organic matter, scientists use the carbon dating model \qquad , which
denotes the ratio R of carbon 14 to carbon 12 present at any

What you should learn:

How to use exponential growth and decay functions to model and solve real-life problems time t (in years).

III. Gaussian Models

The Gaussian model is commonly used in probability and statistics to represent populations that are

What you should learn:
How to use Gaussian functions to model and solve real-life problems

On a bell-shaped curve, the average value for a population is where the
\qquad of the function occurs.

IV. Logarithmic Models

The number of kitchen widgets y (in millions) demanded each year is given by the model $y=2+3 \ln (x+1)$, where $x=0$ represents the year 2000 and $x \geq 0$. Find the year in which the number of kitchen widgets demanded will be 8.6 million.

What you should learn:

How to use logarithmic functions to model and solve real-life problems

