Chapter 3 – Exponential and Logarithmic Functions

Section 1	Exponential Functions and Their Graphs
Section 2	Logarithmic Functions and Their Graphs
Section 3	Properties of Logarithms
Section 4	Solving Exponential and Logarithmic Equations
Section 5	Exponential and Logarithmic Models

Vocabulary

Exponential function

Natural Base e

Natural Logarithmic Function

Common Logarithmic Function

Change-of-base formula

Section 3.1 Exponential Functions and Their Graphs

Objective: In this lesson you learned how to recognize, evaluate, and graph exponential functions.

	Important Vocabulary	
onential Function	Natural Base <i>e</i>	
	ctions ons and rational functions are examples of functions. Function <i>f</i> with base <i>a</i> is denoted by	What you should learn: How to recognize and evalua exponential functions with base <i>a</i>
-	, where $a \ge 0, a \ne 1$, and x	is any real number.
For $a > 1$, is the g	The neutrical Functions graph of $f(x) = a^x$ increasing or decreasing	What you should learn: How to graph exponential functions with base <i>a</i>
	graph of $g(x) = a^{-x}$ increasing or decreasing	
	$y = a^x$ or $y = a^{-x}$, $a > 1$, the domain is, and the y-intercept is	
	as a horizontal asymptote.	
. The Natural Bas The natural expo	e <i>e</i> nential function is given by the function	What you should learn:
For the graph of <i>f</i>	$f(x) = e^x$, the domain is	How to recognize, evaluate, and graph exponential functions with base <i>e</i>
	, the range is, and the y	-intercept is
The number <i>e</i> car	be approximated by the expression	for large values of <i>x</i>

IV. Applications

After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by the formulas:

For *n* compounding's per year: _____

What you should learn:

How to recognize, evaluate, and graph exponential functions with base *e*

For continuous compounding: _____

Section 3.1 Examples – Exponential Functions and Their Graphs

(3) Using what you know from Chapter 1 (horizontal/vertical shifts, reflections, etc), describe the transformation from the graph of f to the graph of g.

$$f(x) = 3^x$$
 $g(x) = 3^{x-5}$

(4) Sketch a graph of the function by finding the asymptote(s) and calculating a few other points. State the domain and range in interval notation.

(5) Sketch a graph of the function by finding the asymptotes and calculating a few other points. State the domain and range in interval notation.

$$f(x) = 2 + e^{x-2}$$

Section 3.2 Logarithmic Functions and Their Graphs

Objective: In this lesson you learned how to recognize, evaluate, and graph logarithmic functions.

		Important Vocabulary			
Common	Logarithmic Function	Natural Logarithmic Function			
I.	Logarithmic Functions The logarithmic function w $f(x) = a^{x}.$	vith base <i>a</i> is the of the exponential function	What you should learn: How to recognize and evaluate logarithmic functions with base <i>a</i>		
		with base <i>a</i> is defined as	, for x > 0, a > 0,		
	and $a \neq 1$, if and only if x	$= a^{y}$. The notation " $\log_a x$ " is read as"			
	The equation $x = a^{y}$ in exponential form is equivalent to the equation in				
	logarithmic form. When evaluating logarithm	ns, remember that a logarithm is a(n)	This means		
	that log _a x is the	to which <i>a</i> must be rais	ed to obtain		
	Complete the following log	garithm properties:			
	1) $\log_a 1 = $	2) $\log_a a$	=		

- 4) $a^{\log_a x} =$ _____ 3) $\log_a a^x =$ _____
- 5) If $\log_a x = \log_a y$, then _____

11.	Graphs of Logarithmic Functions For $a > 1$, is the graph of $f(x) = \log_a x$ increasing or decreasing over its domain?	What you should learn: How to graph logarithmic functions with base <i>a</i>				
	For the graph of $f(x) = \log_a x$, $a > 1$, the domain is, and the x-intercept is					
	Also, the graph has as a vertical asymptote. The graph of $f(x) = \log_a x$ is a reflection of the graph of $f(x) = a^x$ over the line					
	The Natural Logarithmic Function Complete the following natural logarithm properties: 1) $\ln 1 = $ 2) $\ln e = $ 3) $\ln e^x = $ 4) $e^{\ln x} = $	What you should learn: How to recognize, evaluate, and graph natural logarithmic functions				
	5) If $\ln x = \ln y$, then					

Section 3.2 Examples – Logarithmic Functions and Their Graphs

- (1) Write the logarithmic equation in exponential form.
 - (a) $\log_4 64 = 3$ (b) $\log_5 \sqrt[3]{25} = \frac{2}{3}$

(2) Using what you know from Chapter 1 (horizontal/vertical shifts, reflections, etc), describe the transformation from the graph of f to the graph of g.

$$f(x) = \log_2 x$$
 $g(x) = -2 + \log_2(x+3)$

(3) Sketch a graph of the function by finding the asymptote(s) and calculating a few other points. State the domain and range in interval notation.

Section 3.3 Properties of Logarithms

Objective: In this lesson you learned how to rewrite logarithmic functions with different bases and how to use properties of logarithms to evaluate, rewrite, expand, or condense logarithmic expressions.

Important Vocabulary

Change-of-Base Formula

I. Change of Base

Let *a*, *b*, and *x* be positive real numbers such that $a \neq 1$ and $b \neq 1$. The **change-of-base formula** states that:

What you should learn:

How to rewrite logarithms with different bases

Explain how to use a calculator to evaluate $\log_8 20$.

II. Properties of Logarithms

Let *a* be a positive number such that $a \neq 1$; let *n* be a real number; and let *u* and *v* be positive real numbers.

Complete the following logarithm properties:

- 1) $\log_a(uv) =$ _____
- 2) $\log_a \frac{u}{v} =$ _____
- 3) $\log_a u^n =$ _____

III. Rewriting Logarithmic Expressions

To expand a logarithmic expression means to:

To condense a logarithmic expression means to:

What you should learn:

How to use properties of logarithms to evaluate or rewrite logarithmic expressions

What you should learn:

How to use properties of logarithms to expand or condense logarithmic expressions

IV. Applications of Properties of Logarithms

One way of finding a model for a set of nonlinear data is to take the natural log of each of the x-values and y-values of the data set. If the points are graphed and fall on a straight line, then the x-values and y-values are related by the equation _____

_____, where *m* is

the slope of the straight line.

What you should learn:

How to use properties of logarithmic functions to model and solve real-life problems

Section 3.3 Examples – Properties of Logarithms

(1) Rewrite the logarithm as a ratio of (a) common logarithms and (b) natural logarithms.

 $\log_5 x$

(2) Use the properties of logarithms to rewrite and simplify the logarithmic expression. $\log_{10} \frac{4^2}{3} \cdot \frac{3^4}{3}$

$$\log_2 4^2 \cdot 3$$

(3) Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms.

$$\ln \frac{xy}{z}$$

(4) Condense the expression to the logarithm of a single quantity. $3 \log x + 2 \log y - 4 \log z$

Section 3.4 Solving Exponential and Logarithmic Equations

Objective In the lesson you learned how to solve exponential and logarithmic equations.

I. Introduction

State the One-to-One Property for exponential equations.

What you should learn:

How to solve simple exponential and logarithmic equations

State the One-to-One Property for logarithmic equations.

State the Inverse Property for exponential equations and for logarithmic equations.

Describe some strategies for using the One-to-One Properties and the Inverse Properties to solve exponential and logarithmic equations.

•

Solving Exponential Equations

Describe how to solve the exponential equation

 $10^x = 90$ algebraically.

Π.

What you should learn:

How to solve more complicated exponential equations

III. Solving Logarithmic Equations

Describe how to solve the logarithmic equation $\log_6(4x - 7) =$

 $\log_6(8-x)$ algebraically.

What you should learn:

How to solve more complicated logarithmic equations

IV. Applications of Solving Exponential and Logarithmic Equations

Use the formula for continuous compounding $A = Pe^{rt}$, to find out how long it will take \$1500 to triple in value if it is invested at 12% interest, compounded continuously. What you should learn:

How to use exponential and logarithmic equations to model and solve real-life problems

Section 3.4 Examples – Solving Exponential and Logarithmic Equations

(1) Solve the exponential equation.

$$5^x = \frac{1}{625}$$

(2) Solve the logarithmic equation.

 $\ln(2x-1) = 5$

(3) Solve the equation. Round your answer to three decimal places. (a) $7 - 2e^x = 5$ (b) $\log x^2 = 6$

Section 3.5 Exponential and Logarithmic Models

Objective: In this lesson you learned how to use exponential growth models, exponential decay models, logistic models, and logarithmic models to solve real-life problems.

I.	Introduction The exponential growth model is	What you should learn:
	The exponential decay model is	How to recognize the five most common types of models
	The Gaussian model is	involving exponential or logarithmic functions
	The logistic growth model is	5
	Logarithmic models areand	·
II.	Exponential Growth and Decay To estimate the age of dead organic matter, scientists use the	What you should learn:
	carbon dating model, which	How to use exponential growth and decay functions to
	denotes the ratio R of carbon 14 to carbon 12 present at any	model and solve real-life problems
	time <i>t</i> (in years).	
III.	Gaussian Models The Gaussian model is commonly used in probability and	What you should learn:
	statistics to represent populations that are	How to use Gaussian functions to model and solve real-life problems

On a bell-shaped curve, the average value for a population is where the

_____ of the function occurs.

IV. Logarithmic Models

The number of kitchen widgets y (in millions) demanded each year is given by the model $y = 2 + 3 \ln(x + 1)$, where x = 0represents the year 2000 and $x \ge 0$. Find the year in which the number of kitchen widgets demanded will be 8.6 million.

What you should learn:

How to use logarithmic functions to model and solve real-life problems