Chapter 2 - Polynomial and Rational Functions

Section 1	Quadratic Functions
Section 2	Polynomial Functions of Higher Degree
Section 3	Real Zeros of Polynomial Functions
Section 4	Complex Numbers
Section 5	The Fundamental Theorem of Algebra
Section 6	Rational Functions and Asymptotes
Section 7	Graphs of Rational Functions

Vocabulary

Linear Function	Quadratic Function
Standard form (of a quadratic)	Axis of Symmetry
Vertex	Continuous
The Leading Coefficient Test	Extrema
Relative minimum	Relative Maximum
Repeated zero	Multiplicity
Intermediate Value Theorem	Synthetic division
Remainder Theorem	Factor Theorem
Rational Zero Test	Imaginary unit
Complex number	Complex conjugate
The Fundamental Theorem of Algebra	Linear Factorization Theorem
Conjugates	Rational function
Vertical asymptote	Horizontal asymptote
Slant asymptote	

Section 2.1 Quadratic Functions

Objective: In this lesson you learned how to sketch and analyze graphs of quadratic functions

	Important Vocabulary	
Constant Function	Linear Function	Quadratic Function
Axis of Symmetry	Vertex	

I. The Graph of a Quadratic Function

Let n be a nonnegative integer and let $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ be real numbers with $a_{n} \neq 0$. A polynomial function of \boldsymbol{x} with degree \boldsymbol{n} is given by:

What you should learn:
How to analyze graphs of quadratic functions

A quadratic function is a polynomial function of \qquad degree. The graph of a quadratic function is a special " U -shaped" curved called a(n) \qquad _.

If the leading coefficient of a quadratic function is positive, the graph of the function opens
\qquad and the vertex of the parabola is the \qquad point on the graph. If the leading coefficient of a quadratic function is negative, the graph of the function opens
\qquad and the vertex of the parabola is the \qquad point on the graph.
II. The Standard Form of a Quadratic Function

The standard form of a quadratic function is
What you should learn:
How to write quadratic functions in standard form and use the results to sketch the graphs of functions
For a quadratic function in standard form, the axis (of symmetry) of the associated parabola is \qquad and the vertex is (\qquad , \qquad).

To write a quadratic function in standard form:

To find the x-intercepts of the graph of $f(x)=a x^{2}+b x+c$:
III. Finding Minimum and Maximum Values

For a quadratic function in the form $f(x)=a x^{2}+b x+c$,
when $a>0, f$ has a minimum that occurs at \qquad .

When $a<0, f$ has a maximum that occurs at \qquad .

What you should learn:
How to find minimum and maximum values of quadratic functions in real-life applications

To find the minimum or maximum value:

Section 2.1 Examples - Quadratic Functions

(1) Describe the graph of $f(x)=2 x^{2}+8 x+8$ by identifying the vertex, axis of symmetry, x-intercepts, and direction the graph opens.
(2) Write the standard form of the equation of the parabola whose vertex is $(1,2)$ and that passes through the point $(3,-6)$.

Section 2.2 Polynomial Functions of Higher Degree

Objective: In this lesson you learned how to sketch and analyze graphs of polynomial functions

	Important Vocabulary		
Continuous maximum	Extrema	Relative minimum	Relative

I. Graphs of Polynomial Functions

Name two basic features of the graphs of polynomial functions.
1)

> What you should learn:
> How to use transformations to sketch graphs of polynomial functions
2)

Will the graph of $g(x)=x^{7}$ look more like the graph of $f(x)=x^{2}$ or the graph of $f(x)=x^{3}$? Explain.
II. The Leading Coefficient Test

State the Leading Coefficient Test:

What you should learn:

How to use the Leading Coefficient Test to determine the end behavior of graphs of polynomial functions

1) When n is odd

2) When n is even

III. Zeros of Polynomials Functions

Let f be a polynomial function of degree n. The function f has at most \qquad real zeros. The graph of f has at most
\qquad relative extrema.

Let f be a polynomial function and let a be a real number. List four equivalent statements about the real zeros of f.
1)
2)
3)
4)

For a polynomial function, a factor of $(x-a)^{k}, k>1$, yields a repeated zero:
1)
2)

If a polynomial function f has a repeated zero $x=3$ with multiplicity 4 , the graph of f
\qquad the x -axis at $x=$ \qquad . If f has a repeated zero $x=4$ with multiplicity 3 ,
the graph of f \qquad the x -axis at $x=$ \qquad .
IV. The Intermediate Value Theorem

State the Intermediate Value Theorem:

What you should learn:
How to use the Intermediate
Value Theorem to help locate zeros of polynomial functions

Describe how the Intermediate Value Theorem can help in locating the real zeros of a polynomial function f.

Section 2.2 Examples - Polynomial Functions of Higher Degree

(1) Use the Leading Coefficient Test to determine the right and left hand behavior of the graph. Then sketch what the rest of the graph might look like.

$$
f(x)=-x^{3}+2 x-1
$$

(2) Find all the real zeros of the polynomial function.

$$
h(t)=t^{2}-6 t+9
$$

(3) Find a polynomial function with the given zeros, multiplicities, and degree.

Zero: -1 , multiplicity: 2
Zero: -2 , multiplicity: 1
Degree: 3

Section 2.3 Real Zeros of Polynomial Functions

Objective: In this lesson you learned how to use long division and synthetic division to divide polynomials by other polynomials and how to find the rational and real zeros of polynomial functions

	Important Vocabulary	
Long division of polynomials	Division Algorithm	Synthetic Division
Remainder Theorem	Factor Theorem	Upper bound
Lower bound	Improper	Proper

I. Long Division of Polynomials

When dividing a polynomial $f(x)$ by another polynomial $d(x)$,
if the remainder $r(x)=0, d(x)$ \qquad

What you should learn:

How to use long division to divide polynomials by other polynomials
into $f(x)$.

If $f(x)$ and $d(x)$ are polynomials such that $d(x) \neq 0$, and the degree of $d(x)$ is less than or equal to
the degree of $f(x)$, then there exist unique polynomials $q(x)$ and $r(x)$ such that

$$
f(x)=d(x) q(x)+r(x)
$$

where:

The rational expression $f(x) / d(x)$ is improper if:

The rational expression $r(x) / d(x)$ is proper if:

II. Synthetic Division

Can synthetic division be used to divide a polynomial by $x^{2}-5$? Explain.

What you should learn:
How to use synthetic division to divide polynomials by binomials of the form $(x-k)$

Can synthetic division be used to divide a polynomial by $x+4$? Explain.

To divide $a x^{3}+b x^{2}+c x+d$ by $x-k$, use the following pattern:

III. The Remainder and Factor Theorems

To use the Remainder Theorem to evaluate a polynomial function $f(x)$ at $x=k$, you:

What you should learn:
How to use the Remainder and Factor Theroems

To use the Factor Theorem to show that $(x-k)$ is a factor of a polynomial function $f(x)$, you:

List three facts about the remainder r, obtained in the synthetic division of $f(x)$ by $x-k$:
1)
2)
3)

IV. The Rational Zero Test

Describe the purpose of the Rational Zero Test:
What you should learn:
How to use the Rational Zero Test to determine possible rational zeros of polynomial functions

State the Rational Zero Test:

To use the Rational Zero Test, you:
V. Other Tests for Zeros of Polynomials

State Descartes's Rule of Signs:

What you should learn:
How to use Descartes's Rule of Signs and the Upper and Lower Bound Rules to find zeros of polynomials

Section 2.3 Examples - Real Zeros of Polynomial Functions

(1) Use long division to divide.

$$
\left(x+8+6 x^{3}+10 x^{2}\right) \div\left(2 x^{2}+1\right)
$$

(2) Use synthetic division to divide.

$$
\left(3 x^{3}-17 x^{2}+15 x-25\right) \div(x-5)
$$

(3) Use the Remainder Theorem and Synthetic Division to evaluate the function at each given value.

$$
g(x)=2 x^{6}+3 x^{4}-x^{2}+3
$$

a) $g(2)$
b) $g(1)$
c) $g(3)$
d) $g(-1)$
(4) Find ALL real zeros of the polynomial function.

$$
f(x)=4 x^{3}+7 x^{2}-11 x-18
$$

Section 2.4 Complex Numbers

Objective: In this lesson you learned how to perform operations with complex numbers

	Important Vocabulary	
Complex Number	Complex conjugates	Imaginary axis
Real axis	Bounded	Unbounded

I. The Imaginary Unit \boldsymbol{i}

Mathematicians created an expanded system of numbers using the imaginary unit \boldsymbol{i}, defined as $i=$ \qquad because:

What you should learn:
How to use the imaginary unit i to write complex numbers

By definition, $i^{2}=$ \qquad .

For the complex number $a+b i$, if $b=0$, the number $a+b i=a$ is a(n)
\qquad . If $b \neq 0$, the number $a+b i$ is a(n) \qquad .

If $a=0$, the number $a+b i=b i$, where $b \neq 0$, is called a(n)
\qquad The set of complex numbers consists of the set of
\qquad and the set of \qquad .

Two complex numbers $a+b i$ and $c+d i$, written in standard form, are equal to each other if:

II. Operations with Complex Numbers

To add two complex numbers, you:

What you should learn:
How to add, subtract, and multiply complex numbers

To subtract two complex numbers, you:
The additive identity in the complex number system is \qquad .

The additive inverse of the complex number $a+b i$ is \qquad .

To multiply two complex numbers $a+b i$ and $c+d i$, you:
III. Complex Conjugates

The product of a pair of complex conjugates is a(n)
\qquad number.

To find the quotient of the complex numbers $a+b i$ and $c+d i$,

What you should learn:
How to use complex conjugates to write the quotient of two complex numbers in standard form
where c and d are not both zero, you:

Section 2.4 Examples - Complex Numbers

(1) Perform the indicated operation. Write the answer in standard form.
a) $(3-i)+(2+3 i)$
b) $3-(-2+3 i)+(-5+i)$
c) $(2-i)(4+3 i)$
d) $\frac{2+3 i}{4-2 i}$
(2) Solve the quadratic equation.
a) $x^{2}+4=0$
b) $3 x^{2}-2 x+5=0$

Section 2.5 The Fundamental Theorem of Algebra

Objective: In this lesson you learned how to determine the numbers of zeros of polynomial functions and find them

	Important Vocabulary
Fundamental Theorem of Algebra	Linear Factorization Theorem

I. The Fundamental Theorem of Algebra

In the complex numbers system, every n th-degree polynomial function has \qquad zeros. An n th-
degree polynomial can be factored into
\qquad linear factors.

II. Conjugate Pairs

Let $f(x)$ be a polynomial function that has real coefficients. If
$a+b i$, where $b \neq 0$, is a zero of the function, then we know

What you should learn:
How to use the Fundamental Theorem of Algebra to determine the number of zeros of a polynomial function and find all zeros of polynomial functions, including complex zeros

What you should learn:

How to find conjugate pairs of complex zeros that \qquad is also a zero of the function.

III. Factoring a Polynomial

To write a polynomial of degree $n>0$ with real coefficients as a product without complex factors, write the polynomial as:

What you should learn:
How to find zeros of polynomials by factoring

A quadratic factor with no real zeros is said to be \qquad .

Section 2.5 Examples - The Fundamental Theorem of Algebra

(1) For the following problem, (a) find $\underline{\text { ALL }}$ the zeros of the function, and (b) write the polynomial as a product of linear factors. You might have to use the Quadratic Formula if you can't factor.

$$
f(y)=81 y^{4}-625
$$

(2) Find a fourth degree polynomial that has 2,2 , and $4-i$ as zeros.

Section 2.6 Rational Functions and Asymptotes

Objective: In this lesson you learned how to determine the domains and find asymptotes of rational functions

Important Vocabulary

I. Introduction to Rational Functions

The domain of a rational function of x incudes all real numbers except:

What you should learn:
How to find the domains of rational functions

To find the domain of a rational function of x, you:
II. Horizontal and Vertical Asymptotes

The notation " $f(x) \rightarrow 5$ as $x \rightarrow \infty$ " means:

What you should learn:
How to find horizontal and vertical asymptotes of graphs of rational functions

Let f be the rational function given by

$$
f(x)=\frac{N(x)}{D(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}
$$

where $N(x)$ and $D(x)$ have no common factors.

1) The graph of f has vertical asymptotes at \qquad .
2) The graph of f has at most one horizontal asymptote determined by
\qquad .
a. If $n<m$, \qquad
b. If $n=m$, \qquad
c. If $n>m$, \qquad

What makes a hole in the graph of a rational function?

Section 2.7 Graphs of Rational Functions

Objective: In this lesson you learned how to sketch graphs of rational functions

Important Vocabulary

Slant (or oblique) asymptote

I. The Graph of a Rational Function

To sketch the graph of the rational function
$f(x)=N(x) / D(x)$, where $N(x)$ and $D(x)$ are polynomials with no common factors, you:
1.
2.
3.
4.
5.
6.
7.
II. Slant Asymptotes

To find the equation of a slant asymptote, you:
.

What you should learn:

How to analyze and sketch graphs of rational functions

What you should learn:
How to sketch graphs of rational functions that have slant asymptotes

Section 2.6/2.7 Examples - Rational Functions

1) Graph the function (a) by finding the intercepts, (b) finding the asymptotes, and (c) using an xy-chart to fill in the rest.

$$
f(x)=-\frac{2}{x+3}
$$

2) Graph the function (a) by finding the intercepts, (b) finding the asymptotes, and (c) using an xy-chart to fill in the rest.

$$
f(x)=\frac{2 x^{2}-5 x+5}{x-2}
$$

