Chapter 1 - Functions and Their Graphs

Section 1	Lines in the Plane
Section 1.5	Domain and Range
Section 2	Functions
Section 3	Graphs of Functions
Section 4	Shifting, Reflecting, and Stretching Graphs
Section 5	Combinations of Functions
Section 6	Inverse Functions
Section 7	Linear Models and Scatter Plots

	Vocabulary	
Slope	Parallel	Perpendicular
Point-slope form	Slope-intercept form	Horizontal line
Vertical line	General form (of a line)	Linear function
Domain	Range	Set-Builder Notation
Interval Notation	Function	Independent Variable
Dependent Variable	Relation	Function notation
Vertical Line Test	Increasing	Decreasing
Relative minimum	Relative maximum	Relative extrema
Even Function	Odd Function	Difference quotient
Parent function	Vertical Shift	Horizontal Shift
Reflection	Rigid transformation	
Non-rigid Transformation	Combinations of functions	
Function Composition	Inverse Function	One-to-one
Horizontal Line Test		

Section 1.1 Lines in the Plane

Objective: In this lesson you will review how to find and use the slope of a line to write and graph linear equations

		Important Vocabulary	
Slope	Parallel	Perpendicular	Point-Slop Form
Slope-Intercept Form	General Form	Horizontal Line	Vertical Line
Linear Function			

I. The Slope of a Line

The formula for the slope of a line passing through the

What you should learn:
How to find the slopes of lines points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $m=$ \qquad .

A line whose slope is positive \qquad from left to right.

A line whose slope is negative \qquad from left to right.

A line with zero slope is \qquad .

A line with undefined slope is \qquad .
II. The Point-Slope Form of the Equation of a Line

The point-slope form of the equation of a line is

What you should learn:
How to write linear equations given points on lines and their slopes

This form of equation is best used to find the equation of a line when:

The two-point form of the equation of a line is \qquad .

The two-point form of a line is best used to find the equation of a line when:

A linear function has the form \qquad . Its graph is a \qquad
that has slope \qquad and a y-intercept at (\qquad
\qquad).

III. Sketching Graphs of Lines

The slope-intercept form of the equation of a line is
\qquad where m is the
\qquad and the y-intercept is (\qquad).

What you should learn:
How to use slope-intercept forms of linear equations to sketch lines.

The equation of a horizontal line is \qquad . The slope of a horizontal line is \qquad . The y-coordinate of every point on the graph of a horizontal line is \qquad .

The equation of a vertical line is \qquad The slope of a vertical line is
\qquad . The x-coordinate of every point on the graph of a vertical line is
\qquad .

The general form of the equation of a line is \qquad .

Every line has an equation that can be written in \qquad .

IV. Parallel and Perpendicular Lines

The relationship between the slope of two lines that are parallel is:

What you should learn:

How to use slope to identify parallel and perpendicular lines

The relationship between the slope of two lines that are perpendicular is:

A line that is parallel to a line whose slope is 2 has a slope of \qquad .

A line that is perpendicular to a line whose slope is 2 has a slope of \qquad .

Section 1.1 Examples - Lines in the Plane

(1) Find the point-slope form of the equation that passes through the given point and has the indicated slope.
$(-3,6) \quad m=-2$
(2) Decide whether the two lines are parallel, perpendicular, or neither.

$$
y=4 x-1 \quad 2 x+8 y=12
$$

(3) Determine the slope and y-intercept (if possible) of the linear equation.

$$
3 x+4 y=1
$$

Section 1.1.5 Domain and Range

Objective: In this lesson you learned how to identify domain, range, and how to write domain and range in Roster notation, Set-Builder notation, and Interval notation.

Important Vocabulary

Domain
Set-Builder Notation

Range Interval Notation

Roster Notation
What you should learn:
How to find (determine)
domain and range from a
graph and/or equation

What is range?

How can you find (determine) domain and range when given a graph?

How can you find (determine) domain and range when given an equation?
II. Notation
A. Roster Notation -

What you should learn:
How to write domain and range in different notation formats
B. Set-Builder Notation -
C. Interval Notation -
III. Domain Restrictions

What causes domain restrictions?

What you should learn:
How to identify possible domain and range issues given a graph and/or equation

Section 1.1.5 Examples - Domain and Range

(1) Determine the domain and range of the following set of ordered pairs.

$$
\{(-8,0),(6,4),(0,0),(-7,-3),(10,-5)\}
$$

(2) Given the inequality, write its equivalent form in set-builder notation.

$$
a>12
$$

(3) Given the inequality, write its equivalent form in interval notation.

$$
x \leq 7
$$

(4) Use the graph of the function to write the domain and range in set-builder notation and interval notation.

Section 1.2 Functions

Objective: In this lesson you learned how to evaluate functions and find their domains

		Important Vocabulary	
Function	Domain	Range	Independent Variable

I. Introduction to Functions

A rule of correspondence that matches quantities from one set with items from a different set is a(n)

What you should learn: How to decide whether a relation between two variables represents a function
\qquad .

In functions that can be represented by ordered pairs, the first coordinate in each ordered pair is the
\qquad and the second coordinate is the \qquad .

Some characteristics of a function from Set A to Set B are:
1)
2)
3)
4)

To determine whether or not a relation is a function:

If any input value of a relation is matched with two or more output values:

II. Function Notation

The symbol \qquad is function notation for the value of f at x or simply f of x. The symbol $f(x)$ corresponds to the

What you should learn:
How to use function notation and evaluate functions

Keep in mind that \qquad is the name of the function, whereas \qquad is the output value of the function at the input value x.

In function notation, the \qquad is the independent variable and the \qquad is the dependent variable.

A piecewise-defined function is:

III. The Domain of a Function

The implied domain of a function defined by an algebraic expression is:

What you should learn:

How to find the domains of functions

In general, the domain of a function excludes values that:

IV. Difference Quotients

A difference quotient is defined as:

What you should learn:

How to evaluate difference quotients

Section 1.2 Examples - Functions

(1) Evaluate the function at each specified value of the independent variable and simplify.
$f(a)=3 a+5$
a) $f(-2)$
b) $f(4)$
c) $f(x+1)$
(2) Find the domain of the function.

$$
s(y)=\frac{3 y}{y+5}
$$

(3) Find the difference quotient and simplify your answer.

$$
g(x)=3 x-1 \text { where } \frac{g(x+h)-g(x)}{h}, h \neq 0 \text { is the difference quotient }
$$

Section 1.3 Graphs of Functions

Objective: In this lesson you learned how to analyze the graphs of functions

	Important Vocabulary	
Graph of a Function	Greatest Integer Function	Step Function
Even Function	Odd Function	Interval Notation
Vertical Line Test	Increasing	Decreasing
Relative Minimum	Relative Maximum	Relative Extrema

I. The Graph of a Function

Explain the use of open or closed dots in the graphs of
functions:

What you should learn:
How to find the domains and ranges of functions and how to use the Vertical Line Test for functions

To find the domain of a function from its graph:

To find the range of a function from its graph:

The Vertical Line Test for functions states:
II. Increasing and Decreasing Functions

A function f is increasing on an interval if, for any x_{1} and x_{2} in the interval:

What you should learn:

How to determine intervals on which functions are increasing, decreasing, or constant

A function f is constant on an interval if, for any x_{1} and x_{2} in the interval:

Given a graph of a function, how do you determine when a function is increasing, decreasing, or constant?

III. Relative Minimum and Maximum Values

A function value $f(a)$ is called a relative minimum of f if

What you should learn:

How to determine relative minimum and relative maximum values of functions

A function value $f(a)$ is called a relative maximum of f if:

The point at which a function changes from increasing to decreasing is a relative
\qquad . The point at which a function changes from decreasing to increasing is a relative \qquad .
IV. Step Functions and Piecewise-Defined Functions

Describe the graph of the greatest integer function:

Describe the graph of a piecewise-defined function:

V. Even and Odd Functions

A graph is symmetric with respect to the y-axis if, whenever (x, y) is on the graph, \qquad is also on

What you should learn:
How to identify and graph step functions and other piecewisedefined functions
the graph. A graph is symmetric with respect to the x-axis if, whenever (x, y) is on the graph,
\qquad is also on the graph. A graph is symmetric with respect to the origin
if, whenever (x, y) is on the graph, \qquad is also on the graph. A graph that is symmetric with respect to the x-axis is:

A function is even if, for each x in the domain of $f, f(-x)=$ \qquad

A function is odd if, for each x in the domain of $f, f(-x)=$ \qquad

Section 1.3 Examples - Graphs of Functions

(1) Find the domain and range of the function, then graph. Write your domain and range in interval notation.

$$
f(x)=\sqrt{4-x^{2}}
$$

(2)Determine the open interval(s) on which the function is increasing, decreasing, or constant.

(3) Tell whether the function is even, odd, or neither algebraically.

$$
f(t)=t^{2}+2 t-3
$$

Section 1.4 Shifting, Reflecting, and Stretching Graphs

Objective: In this lesson you learned how to identify and graph shifts, reflections, and nonrigid transformations of functions

	Important Vocabulary	
Vertical Shift	Horizontal Shift	Rigid Transformation
Non-rigid Transformation		

I. Summary of Graphs of Parent Functions

Sketch an example of each of the six most commonly used parent functions in Algebra.

What you should learn:
How to recognize graphs of parent functions

Linear Function

Quadratic Function

Cubic Function

Rational Function

II. Vertical and Horizontal Shifts

Let c be a positive real number. Complete the following representations of shifts in the graph of $y=f(x)$:

What you should learn:
How to use vertical and horizontal shifts to graph functions

1) Vertical shift c units upward: \qquad
2) Vertical shift c units downward: \qquad
3) Horizontal shift c units to the right: \qquad
4) Horizontal shift c units to the left: \qquad
III. Reflecting Graphs

A reflection in the x-axis is a type of transformation of the
graph of $y=f(x)$ represented by $h(x)=$ \qquad .

What you should learn:
How to use reflections to graph functions

A reflection in the y-axis is a type of transformation of the graph $y=f(x)$ represented by $h(x)=$ \qquad .
IV. Non-rigid Transformations

Name three types of rigid transformations:
1)
2)
3)

Rigid transformations change only the \qquad of the graph in the coordinate plane.

Name four types of non-rigid transformations:
1)
2)
3)
4)

A non-rigid transformation $y=c f(x)$ of the graph $y=f(x)$ is a \qquad if
$c>1$ or a \qquad if $0<c<1$. A nonrigid transformation $y=f(c x)$ of the graph of $y=f(x)$ is a \qquad if $c>1$ or a \qquad if $0<c<1$.

Section 1.4 Examples - Shifting, Reflecting, and Stretching Graphs

(1) Sketch the graph of the 3 functions on the same rectangular coordinate system.

$$
\begin{aligned}
& f(x)=x \\
& g(x)=x-4 \\
& h(x)=x+2
\end{aligned}
$$

(2) Compare the graph of $g(x)$ with the graph of its parent function.

$$
g(x)=|x+1|-2
$$

(3) Sketch the graph of the 3 functions on the same rectangular coordinate system.

$$
\begin{aligned}
f(x) & =\sqrt{x} \\
g(x) & =\sqrt{-x} \\
h(x) & =-\sqrt{x}
\end{aligned}
$$

(4) Compare the graph of $g(x)$ with the graph of its parent function.

$$
g(x)=-(x+2)^{3}+1
$$

(5) Sketch the graph of the 3 functions on the same rectangular coordinate system.

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=2(x+1)^{2} \\
& h(x)=\frac{1}{2} x^{2}
\end{aligned}
$$

Section 1.5 Combinations of Functions

Objective: In this lesson you learned how to find arithmetic combinations and compositions of functions

	Important Vocabulary
Combinations of Functions	Function Compositions

I. Arithmetic Combinations of Functions

Just as two real numbers can be combined by the operations of additions, subtraction, multiplication, and division to form

What you should learn:
How to add, subtract, multiply and divide functions
other real numbers, two functions f and g can be combined to create new functions such as the
\qquad of f and g to create new functions.

The domain of an arithmetic combination of functions f and g consists of:

Let f and g be two functions with overlapping domains. Complete the following arithmetic combinations of f and g for all x common to both domains:

1) Sum:

$$
(f+g)(x)=
$$

\qquad
2) Difference:

$$
(f-g)(x)=
$$

\qquad
3) Product:

$$
(f g)(x)=
$$

\qquad
4) Quotient:

$$
\left(\frac{f}{g}\right)(x)=
$$

\qquad

II. Compositions of Functions

The composition of the function f with the function g is $(f \circ g)(x)=$ \qquad

What you should learn:
How to find compositions of one functions with another function

For the composition of the function f with g, the domain of $f \circ g$ is:

III. Applications of Combinations of Functions

The function $f(x)=0.06 x$ represents the sales tax owed on a purchase with a price tag of x dollars and the function

What you should learn:

How to use combinations of functions to model and solve real-life problems $g(x)=0.75 x$ represents the sale price of an item with a price tag of x dollars during a 25% off sale. Using one of the combinations of functions discussed in this section, write the function that represents the sales tax owed on an item with a price tag of x dollars during a 25% off sale.

Section 1.5 Examples - Combinations of Functions

(1) Find $\left(\frac{f}{g}\right)(x)$. What is the domain of $\frac{f}{g}$?

$$
f(x)=2 x-5 \quad g(x)=1-x
$$

(2) Determine the domains of (a) f, (b) g, and (c) $f \circ g$

$$
f(x)=\sqrt{x+3} \quad g(x)=\frac{x}{2}
$$

Section 1.6 Inverse Functions

Objective: In this lesson you learned how to find inverse functions graphically and algebraically

	Important Vocabulary	
Inverse Function	One-to-one	Horizontal Line Test

I. Inverse Function

For a function f that is defined by a set of ordered pairs, to form the inverse function of f :

What you should learn:

How to find inverse functions informally and verify that two functions are inverse functions of each other

For a function f and its inverse f^{-1}, the domain of f is equal to \qquad and the range of f is equal to \qquad .

To verify that two functions, f and g, are inverse functions of each other:
II. The Graph of an Inverse Function

If the point (a, b) lies on the graph of f, then the point
\qquad
\qquad) lies on the graph of f^{-1} and vice versa. The graph of f^{-1} is a reflection of the graph of f in the line
\qquad _.

III. The Existence of an Inverse Function
 If a function is one-to-one, that means:

What you should learn:

How to use graphs of functions to decide whether functions have inverse functions

What you should learn:
How to determine if functions are one-to-one

A function f has an inverse f^{-1} if and only if:

To tell whether a function is one-to-one from its graph:
IV. Finding Inverse Functions Algebraically
To find the inverse of a function f algebraically:

What you should learn:
How to find inverse functions algebraically
1)
2)
3)
4)
5)

Section 1.6 Examples - Inverse Functions

(1) Show that f and g are inverse functions (a) algebraically and (b) numerically.

$$
f(x)=\frac{x-9}{4} \quad g(x)=4 x+9
$$

(2) Determine whether the given function is one-to-one. If so, then find the functions inverse. $f(x)=3 x+5$

