Chapter 1 – Functions and Their Graphs

Section 1	Lines in the Plane
Section 1.5	Domain and Range
Section 2	Functions
Section 3	Graphs of Functions
Section 4	Shifting, Reflecting, and Stretching Graphs
Section 5	Combinations of Functions
Section 6	Inverse Functions
Section 7	Linear Models and Scatter Plots

Vocabulary						
Slope	Parallel	Perpendicular				
Point-slope form	Slope-intercept form	Horizontal line				
Vertical line	General form (of a line)	Linear function				
Domain	Range	Set-Builder Notation				
Interval Notation	Function	Independent Variabl				
Dependent Variable	Relation	Function notation				
Vertical Line Test	Increasing	Decreasing				
Relative minimum	Relative maximum	Relative extrema				
Even Function	Odd Function	Difference quotient				
Parent function	Vertical Shift	Horizontal Shift				
Reflection	Rigid transformation					
Non-rigid Transformation	Combinations of functions					
Function Composition	Inverse Function	One-to-one				
Horizontal Line Test						

Section 1.1 Lines in the Plane

Objective: In this lesson you will review how to find and use the slope of a line to write and graph linear equations

		Ir	mportant Vocabulary	
Slope		Parallel	Perpendicular	Point-Slop Form
Slope-Inte	rcept Form	General Form	Horizontal Line	Vertical Line
Linear Fun	ction			
	The Slope o		ne passing through the	What you should learn:
		-	=	How to find the slopes of lines
	A line whose	e slope is positive	from left	to right.
	A line whose	e slope is negative	from lef	t to right.
	A line with z	ero slope is		
	A line with u	ndefined slope is		
II.	The Point-S	Slope Form of the	Equation of a Line	What you should learn:
	The point-sl	ope form of the equ	ation of a line is	How to write linear equations given points on lines and their slopes
	This form of	equation is best use	ed to find the equation of a lin	ne when:
	The two-poi	nt form of the equa	tion of a line is	

The two-point form of a line is best used to find the equation of a line when:

A linear function has the form	Its graph is a
that has slope and a y-intercept at (,).	
Sketching Graphs of Lines	What you should learn:
The slope-intercept form of the equation of a line is	How to use slope-intercept
, where <i>m</i> is the	forms of linear equations to sketch lines.
and the y-intercept is (,).	Sketch mies.
The equation of a horizontal line is The slope	of a horizontal line is Th
y-coordinate of every point on the graph of a horizontal line is	·
The equation of a vertical line is The slope of	a vertical line is
. The x-coordinate of every poir	t on the graph of a vertical line is
The general form of the equation of a line is	
Parallel and Perpendicular Lines	What you should learn:
The relationship between the slope of two lines that are parall	
is:	parallel and perpendicular lines
The relationship between the slope of two lines that are perpe	endicular is:
A line that is parallel to a line whose slope is 2 has a slope of _	

Page | 3

Section 1.1 Examples – Lines in the Plane

- (1) Find the point-slope form of the equation that passes through the given point and has the indicated slope.
 - (-3, 6) m = -2

(2) Decide whether the two lines are *parallel*, *perpendicular*, or *neither*. y = 4x - 1 2x + 8y = 12

(3) Determine the slope and y-intercept (if possible) of the linear equation. $\label{eq:constraint} 3x+4y=1$

Section 1.1.5 Domain and Range

Objective: In this lesson you learned how to identify domain, range, and how to write domain and range in Roster notation, Set-Builder notation, and Interval notation.

Important Vocabulary						
Domain	Range	Roster Notation				
Set-Builder Notation	Interval Notation					

I. Domain and Range What is domain? What you should learn:

How to find (determine) domain and range from a graph and/or equation

What is range?

How can you find (determine) domain and range when given a graph?

How can you find (determine) domain and range when given an equation?

II. Notation

A. Roster Notation -

What you should learn:

How to write domain and range in different notation formats

B. Set-Builder Notation -

C. Interval Notation -

III. Domain Restrictions What causes domain restrictions? What you should learn:

How to identify possible domain and range issues given a graph and/or equation

Section 1.1.5 Examples – Domain and Range

(1) Determine the domain and range of the following set of ordered pairs.

 $\{(-8,0), (6,4), (0,0), (-7,-3), (10,-5)\}$

(2) Given the inequality, write its equivalent form in set-builder notation.

a > 12

(3) Given the inequality, write its equivalent form in interval notation.

 $x \leq 7$

(4) Use the graph of the function to write the domain and range in set-builder notation and interval notation.

Section 1.2 Functions

		li	mportant Vocabulary						
Function	Domain	Range	Independent Variable	Dependent Variable					
Relation	Function No	tation	Difference Quotient						
Ι.	Introduction to F	unctions		What you should learn:					
	A rule of corresponent of corresponent of corresponent of the second sec		How to decide whether a relation between two variables represents a function						
	and the second coordinate is the								
	In functions that can be represented by ordered pairs, the first coordinate in each ordered pair is and the second coordinate is the								
		Some characteristics of a function from Set A to Set B are:							
	Some characterist	ics of a functic	on from Set A to Set B are:						
	Some characterist	ics of a functic	on from Set A to Set B are:						
		ics of a functic	on from Set A to Set B are:						
	1)	ics of a functio	on from Set A to Set B are:						
	1) 2)	ics of a functio	on from Set A to Set B are:						

Objective: In this lesson you learned how to evaluate functions and find their domains

If any input value of a relation is matched with two or more output values:

II. Function Notation

The symbol _____ is **function notation** for the value of f at

x or simply f of x. The symbol f(x) corresponds to the

_____ for a given *x*.

What you should learn:

How to use function notation and evaluate functions

Keep in mind that ______ is the name of the function, whereas ______ is the output value of the

function at the input value x.

In function notation, the _______ is the independent variable and the _______ is the

dependent variable.

A piecewise-defined function is:

III. The Domain of a Function

The **implied domain** of a function defined by an algebraic expression is:

What you should learn:

How to find the domains of functions

In general, the domain of a function excludes values that:

IV. Difference Quotients

A difference quotient is defined as:

What you should learn:

How to evaluate difference quotients

Section 1.2 Examples – Functions

(1) Evaluate the function at each specified value of the independent variable and simplify.

$$f(a) = 3a + 5$$
 a) $f(-2)$ b) $f(4)$ c) $f(x + 1)$

(2) Find the domain of the function.

$$s(y) = \frac{3y}{y+5}$$

(3) Find the difference quotient and simplify your answer.

g(x) = 3x - 1 where $\frac{g(x+h) - g(x)}{h}$, $h \neq 0$ is the difference quotient

Section 1.3 Graphs of Functions

Important Vocabulary							
Graph of a Function	Greatest Integer Function	Step Function					
Even Function	Odd Function	Interval Notation					
Vertical Line Test	Increasing	Decreasing					
Relative Minimum	Relative Maximum	Relative Extrema					

Objective: In this lesson you learned how to analyze the graphs of functions

I. The Graph of a Function

Explain the use of open or closed dots in the graphs of functions:

What you should learn:

How to find the domains and ranges of functions and how to use the Vertical Line Test for functions

To find the domain of a function from its graph:

To find the range of a function from its graph:

The Vertical Line Test for functions states:

II. Increasing and Decreasing Functions

A function f is **increasing** on an interval if, for any x_1 and x_2 in

the interval:

What you should learn:

How to determine intervals on which functions are increasing, decreasing, or constant A function f is **decreasing** on an interval if, for any x_1 and x_2 in the interval:

A function f is **constant** on an interval if, for any x_1 and x_2 in the interval:

Given a graph of a function, how do you determine when a function is *increasing, decreasing*, or *constant*?

III. Relative Minimum and Maximum Values

A function value f(a) is called a **relative minimum** of f if:

What you should learn:

How to determine relative minimum and relative maximum values of functions

A function value f(a) is called a **relative maximum** of f if:

The point at which a function changes from increasing to decreasing is a relative

_____. The point at which a function changes from decreasing to increasing

is a relative ______.

IV. Step Functions and Piecewise-Defined Functions

Describe the graph of the greatest integer function:

What you should learn:

How to identify and graph step functions and other piecewisedefined functions

Describe the graph of a piecewise-defined function:

V. Even and Odd Functions

What you should learn:

How to identify even and odd

(x, y) is on the graph, ______ is also on

A graph is symmetric with respect to the y-axis if, whenever

o on functions

the graph. A graph is symmetric with respect to the x-axis if, whenever (x, y) is on the graph,

_____ is also on the graph. A graph is symmetric with respect to the origin

if, whenever (*x*, *y*) is on the graph, ______ is also on the graph. A graph that

is symmetric with respect to the x-axis is:

A function is **even** if, for each x in the domain of f, f(-x) =

A function is **odd** if, for each x in the domain of f, f(-x) =

Section 1.3 Examples – Graphs of Functions

(1) Find the domain and range of the function, then graph. Write your domain and range in interval notation.

$$f(x) = \sqrt{4 - x^2}$$

(2) Determine the open interval(s) on which the function is *increasing*, *decreasing*, or *constant*.

(3) Tell whether the function is even, odd, or neither algebraically. $f(t) = t^2 + 2t - 3$

Section 1.4 Shifting, Reflecting, and Stretching Graphs

Objective: In this lesson you learned how to identify and graph shifts, reflections, and nonrigid transformations of functions

Important	Vocabulary
important	vocabalary

Horizontal Shift

Rigid Transformation

What you should learn:

parent functions

How to recognize graphs of

Non-rigid Transformation

Vertical Shift

I. Summary of Graphs of Parent Functions

Sketch an example of each of the six most commonly used

parent functions in Algebra.

Linear Function

Absolute Value Function

 1					 	 1
	1	i				
				- 0		
 I					 	L
3						1
S	S					3
		3 - 3				
						1
13		1			 2	
	3					
1	S					13
 1					 	 1
			0.013			
S	C.	Deres of		and a		10

Square Root Function

		-				
 				 		1
			100000			
			- 2	82		13
						S.,
						3
			2000		10010013	
ŀ						
	10 - 1		- 8			

Quadratic Function

Cubic Function

 	 	 N	 	
		senteres Senteres		
		 		 2
				8
	B	 		 S

Rational Function

	•				
				8	
		 			 S

II. Vertical and Horizontal Shifts

Let *c* be a positive real number. Complete the following

representations of shifts in the graph of y = f(x):

- 1) Vertical shift *c* units upward: _____
- 2) Vertical shift *c* units downward: ______
- 3) Horizontal shift *c* units to the right: ______
- 4) Horizontal shift *c* units to the left: ______

III. Reflecting Graphs

A **reflection** in the x-axis is a type of transformation of the

graph of y = f(x) represented by h(x) = _____.

What you should learn:

What you should learn:

How to use vertical and horizontal shifts to graph

functions

How to use reflections to graph functions

A **reflection** in the y-axis is a type of transformation of the graph y = f(x) represented by

 $h(x) = ____.$

IV. Non-rigid Transformations

Name three types of **rigid transformations**:

- ١
- 1)
- 2)
- 3)

What you should learn:

How to use nonrigid transformations to graph functions

Rigid transformations change only the ______ of the graph in the coordinate plane.

Name four types of **non-rigid transformations**:

1)		
2)		
3)		
4)		
A non-rigid transformation $y = c f$	f(x) of the graph $y = f(x)$ is a	if
<i>c</i> > 1 or a	if $0 < c < 1$. A nonrigid transformation	f(c x) of the
graph of $y = f(x)$ is a	if <i>c</i> > 1 or a	if
0 < c < 1.		

Section 1.4 Examples – Shifting, Reflecting, and Stretching Graphs

(1) Sketch the graph of the 3 functions on the same rectangular coordinate system.

(2) Compare the graph of g(x) with the graph of its parent function. g(x) = |x + 1| - 2

(3) Sketch the graph of the 3 functions on the same rectangular coordinate system.

(4) Compare the graph of g(x) with the graph of its parent function. $g(x) = -(x+2)^3 + 1$

(5) Sketch the graph of the 3 functions on the same rectangular coordinate system.

Section 1.5 Combinations of Functions

Objective: In this lesson you learned how to find arithmetic combinations and compositions of functions

Important Vocabulary		
Combinations of Functions	Function Compositions	

I. Arithmetic Combinations of Functions

Just as two real numbers can be combined by the operations of additions, subtraction, multiplication, and division to form

What you should learn:

How to add, subtract, multiply and divide functions

other real numbers, two functions f and g can be combined to create new functions such as the

____ of f and g to create new functions.

The domain of an arithmetic combination of functions f and g consists of:

Let $f \mbox{ and } g$ be two functions with overlapping domains. Complete the following arithmetic

combinations of f and g for all x common to both domains:

1)	Sum:	$(f+g)(x) = _$
2)	Difference:	(f-g)(x) =
3)	Product:	(<i>fg</i>)(<i>x</i>) =
4)	Quotient:	$\left(\frac{f}{g}\right)(x) = _$

II. Compositions of Functions

The **composition** of the function f with the function g is

 $(f \circ g)(x) =$

What you should learn:

How to find compositions of one functions with another function

III. Applications of Combinations of Functions

The function f(x) = 0.06x represents the sales tax owed on a purchase with a price tag of x dollars and the function

What you should learn:

How to use combinations of functions to model and solve real-life problems

g(x) = 0.75x represents the sale price of an item with a price tag of x dollars during a 25% off sale. Using one of the combinations of functions discussed in this section, write the function that represents the sales tax owed on an item with a price tag of x dollars during a 25% off sale.

Section 1.5 Examples – Combinations of Functions

(1) Find
$$\left(\frac{f}{g}\right)(x)$$
. What is the domain of $\frac{f}{g}$?
 $f(x) = 2x - 5$ $g(x) = 1 - x$

(2) Determine the domains of (a)
$$f$$
, (b) g , and (c) $f \circ g$

$$f(x) = \sqrt{x+3} \qquad g(x) = \frac{x}{2}$$

$$f(x) = \sqrt{x+3}$$
 $g(x) = \frac{\pi}{2}$

Section 1.6 Inverse Functions

Important Vocabulary					
Inverse	e Function	One-to-one	Horizontal Line Test		
I.	Inverse Function		What you should learn:		
	For a function f th form the inverse form	at is defined by a set of ordered p unction of f :	How to find inverse functions informally and verify that two functions are inverse functions of each other		
	-	nd its inverse f^{-1} , the domain of f qual to	f is equal to, an		

Objective: In this lesson you learned how to find inverse functions graphically and algebraically

To verify that two functions, f and g, are **inverse functions** of each other:

II. The Graph of an Inverse Function

If the point (a, b) lies on the graph of f, then the point

(_____ , ____) lies on the graph of f^{-1} and vice versa. The

graph of f^{-1} is a reflection of the graph of f in the line

III. The Existence of an Inverse Function

If a function is **one-to-one**, that means:

A function f has an inverse f^{-1} if and only if:

What you should learn:

How to use graphs of functions to decide whether functions have inverse functions

What you should learn:

How to determine if functions are one-to-one

IV. Finding Inverse Functions Algebraically

To find the inverse of a function f algebraically:

What you should learn:

How to find inverse functions algebraically

- 1)
- 2)
- 3)
- 4)
- 5)

Section 1.6 Examples – Inverse Functions

(1) Show that f and g are inverse functions (a) algebraically and (b) numerically.

$$f(x) = \frac{x-9}{4}$$
 $g(x) = 4x + 9$

(2) Determine whether the given function is one-to-one. If so, then find the functions inverse. f(x) = 3x + 5